IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp1326-1331.html
   My bibliography  Save this article

Management and storage of energy converted via a pyroelectric heat engine

Author

Listed:
  • Zhang, Zeyu
  • Hanrahan, Brendan
  • Shi, Chuan
  • Khaligh, Alireza

Abstract

Heat is a ubiquitous energy resource, which is easily accessible from the environment. The pyroelectric effect, a phenomenon that converts temperature variation into electricity, enables a material to be operated like a heat engine between high and low temperatures and electric fields, producing electrical work. However, current literature focuses on material performances, with no energy stored by operating in such conversion cycles. This work presents a complete pyroelectric management system that both realized cycled energy conversion and a maximum harvested power up to 13.1 μW. We achieved this by integrating a laser heat source, an advanced pyroelectric device, a practical power interface, and an energy storage component together. A thin film Lead Zirconate Titanate device was fabricated to achieve very fast temperature response (∼0.1 ms). Thus, the energy conversion can be achieved in a much higher thermodynamic frequency (1 kHz), leading to a larger power density. The proposed power interface manages an optimized pyroelectric conversion cycle while recharging a battery, or a storage capacitor (up to 2.1 V). The results provide a promising method to harvest energy from waste-heat and have shown great potential to supply power to small-scale, distributed devices. In addition, the application of the laser source has also enabled the system to achieve wireless power transmission, which would enable a more flexible way to supply power to multiple devices.

Suggested Citation

  • Zhang, Zeyu & Hanrahan, Brendan & Shi, Chuan & Khaligh, Alireza, 2018. "Management and storage of energy converted via a pyroelectric heat engine," Applied Energy, Elsevier, vol. 230(C), pages 1326-1331.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1326-1331
    DOI: 10.1016/j.apenergy.2018.09.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918314120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sultana, Ayesha & Alam, Md. Mehebub & Middya, Tapas Ranjan & Mandal, Dipankar, 2018. "A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat," Applied Energy, Elsevier, vol. 221(C), pages 299-307.
    2. Priscilla D. Antunez & Douglas M. Bishop & Yu Luo & Richard Haight, 2017. "Efficient kesterite solar cells with high open-circuit voltage for applications in powering distributed devices," Nature Energy, Nature, vol. 2(11), pages 884-890, November.
    3. Shaikh, Faisal Karim & Zeadally, Sherali, 2016. "Energy harvesting in wireless sensor networks: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1041-1054.
    4. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    5. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    6. Anthony P. Straub & Ngai Yin Yip & Shihong Lin & Jongho Lee & Menachem Elimelech, 2016. "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes," Nature Energy, Nature, vol. 1(7), pages 1-6, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Miwon & Yeatman, Eric M., 2020. "Coupling of piezo- and pyro-electric effects in miniature thermal energy harvesters," Applied Energy, Elsevier, vol. 262(C).
    2. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Song, Zhi, 2021. "Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests," Applied Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    3. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    4. Deepak, K. & Varma, V.B. & Prasanna, G. & Ramanujan, R.V., 2019. "Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity," Applied Energy, Elsevier, vol. 233, pages 312-320.
    5. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    6. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    7. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    8. Dimitrios A. Papathanasopoulos & Konstantinos N. Giannousakis & Evangelos S. Dermatas & Epaminondas D. Mitronikas, 2021. "Vibration Monitoring for Position Sensor Fault Diagnosis in Brushless DC Motor Drives," Energies, MDPI, vol. 14(8), pages 1-24, April.
    9. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    10. Farnaz Derakhshan & Shamim Yousefi, 2019. "A review on the applications of multiagent systems in wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    11. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    12. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Ashraf Virk, Mati-ur-Rasool & Mysorewala, Muhammad Faizan & Cheded, Lahouari & Aliyu, AbdulRahman, 2022. "Review of energy harvesting techniques in wireless sensor-based pipeline monitoring networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Yang, Chen & Xue, RuiPu & Li, Xu & Zhang, XiaoQing & Wu, ZhenYu, 2020. "Power performance of solar energy harvesting system under typical indoor light sources," Renewable Energy, Elsevier, vol. 161(C), pages 836-845.
    15. Qiang Leng & Feilong Li & Zhenxin Tao & Zhanwei Wang & Xi Wu, 2024. "Advanced Wastewater Treatment: Synergistic Integration of Reverse Electrodialysis with Electrochemical Degradation Driven by Low-Grade Heat," Energies, MDPI, vol. 17(21), pages 1-24, October.
    16. Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
    17. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    18. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    19. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    20. Ghomian, Taher & Kizilkaya, Orhan & Choi, Jin-Woo, 2018. "Lead sulfide colloidal quantum dot photovoltaic cell for energy harvesting from human body thermal radiation," Applied Energy, Elsevier, vol. 230(C), pages 761-768.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1326-1331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.