IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp443-451.html
   My bibliography  Save this article

Design and performance of piezoelectric energy output promotion system for road

Author

Listed:
  • Wang, Shuai
  • Wang, Chaohui
  • Yuan, Huazhi
  • Ji, Xiaoping

Abstract

Piezoelectric power devices have become the mainstream technology for road piezoelectric energy harvesting due to the good energy gathering ability and road adaptability. However, due to the non-uniform fabrication of internal parallel energy harvesters and the uneven rolling of loads, their electrical conflict leads to the power performance still need to be improved. This paper presents an energy promotion system suitable for road piezoelectric micro-energy characteristics, which alleviates the energy return conflict caused by inconsistent voltages and improves its overall power performance. First, the electrical performance of a cantilever-type device is tested, whose energy promotion effect is preliminarily verified. Subsequently, the promotion effect and stability are further evaluated based on electrical output of a stacked-type device commonly used on road. The results indicate that the output voltage and power of cantilever-type and stacked-type device are both improved, the maximum output voltage reaches 128 V with improvement rate of 104%–181%. And the effect of Type-II system is better than that of Type-I, the output power reaches 208 mW with improvement rate of 93%, which is more suitable for road energy collection. This work enables the technology to collect energy more efficiently under random, discontinuous, and uneven actual road traffic conditions.

Suggested Citation

  • Wang, Shuai & Wang, Chaohui & Yuan, Huazhi & Ji, Xiaoping, 2022. "Design and performance of piezoelectric energy output promotion system for road," Renewable Energy, Elsevier, vol. 197(C), pages 443-451.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:443-451
    DOI: 10.1016/j.renene.2022.07.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shuai & Wang, Chaohui & Gao, Zhiwei & Cao, Hongyun, 2020. "Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings," Applied Energy, Elsevier, vol. 276(C).
    2. Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
    3. Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
    4. Ferri, Carlotta & Ziar, Hesan & Nguyen, Thien Tin & van Lint, Hans & Zeman, Miro & Isabella, Olindo, 2022. "Mapping the photovoltaic potential of the roads including the effect of traffic," Renewable Energy, Elsevier, vol. 182(C), pages 427-442.
    5. Cui, Lianbiao & Weng, Shimei & Nadeem, Abdul Majeed & Rafique, Muhammad Zahid & Shahzad, Umer, 2022. "Exploring the role of renewable energy, urbanization and structural change for environmental sustainability: Comparative analysis for practical implications," Renewable Energy, Elsevier, vol. 184(C), pages 215-224.
    6. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    7. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Wang, Xingju, 2019. "Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Song, Zhi, 2021. "Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests," Applied Energy, Elsevier, vol. 287(C).
    9. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
    10. Deendarlianto, & Widyaparaga, Adhika & Widodo, Tri & Handika, Irine & Chandra Setiawan, Indra & Lindasista, Alia, 2020. "Modelling of Indonesian road transport energy sector in order to fulfill the national energy and oil reduction targets," Renewable Energy, Elsevier, vol. 146(C), pages 504-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuai & Wang, Chaohui & Yuan, Huazhi & Ji, Xiaoping & Yu, Gongxin & Jia, Xiaodong, 2023. "Size effect of piezoelectric energy harvester for road with high efficiency electrical properties," Applied Energy, Elsevier, vol. 330(PB).
    2. Wang, Chaohui & Liu, Jikang & Yuan, Huazhi & Wang, Shuai & Jia, Xiaodong & Lu, Qiang, 2024. "Design and on-site alert effect of piezoelectric device with amplified displacement for improving clean-energy collection," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
    2. Wang, Chaohui & Cao, Hongyun & Wang, Shuai & Gao, Zhiwei, 2021. "Design and testing of road piezoelectric power generation device based on traffic environment applicability," Applied Energy, Elsevier, vol. 299(C).
    3. Wang, Chaohui & Liu, Jikang & Yuan, Huazhi & Wang, Shuai & Jia, Xiaodong & Lu, Qiang, 2024. "Design and on-site alert effect of piezoelectric device with amplified displacement for improving clean-energy collection," Energy, Elsevier, vol. 307(C).
    4. Wang, Shuai & Wang, Chaohui & Yuan, Huazhi & Ji, Xiaoping & Yu, Gongxin & Jia, Xiaodong, 2023. "Size effect of piezoelectric energy harvester for road with high efficiency electrical properties," Applied Energy, Elsevier, vol. 330(PB).
    5. Hu, Hengwu & Zha, Xudong & Niu, Chao & Wang, Ziwei & Lv, Ruidong, 2024. "Structural optimization and performance testing of concentrated photovoltaic panels for pavement," Applied Energy, Elsevier, vol. 356(C).
    6. Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
    7. Wang, Chaohui & Zhou, Ruoling & Wang, Shuai & Yuan, Huazhi & Cao, Hongyun, 2023. "Structure optimization and performance of piezoelectric energy harvester for improving road power generation effect," Energy, Elsevier, vol. 270(C).
    8. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Song, Zhi, 2021. "Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests," Applied Energy, Elsevier, vol. 287(C).
    9. Zaman, Qamar uz & Zhao, Yuhuan & Zaman, Shah & Shah, Aadil Hameed, 2023. "Examining the symmetrical effect of traditional energy resources, industrial production, and poverty lessening on ecological sustainability: Policy track in the milieu of five neighboring Asian econom," Resources Policy, Elsevier, vol. 83(C).
    10. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    11. Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
    12. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    13. Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
    14. Lanre Ibrahim, Ridwan & Bello Ajide, Kazeem & Usman, Muhammad & Kousar, Rakhshanda, 2022. "Heterogeneous effects of renewable energy and structural change on environmental pollution in Africa: Do natural resources and environmental technologies reduce pressure on the environment?," Renewable Energy, Elsevier, vol. 200(C), pages 244-256.
    15. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    16. Zhou, Li & Li, Fashe & Duan, Yaozong & Wang, Hua, 2023. "Effect of phospholipids on the premixed combustion behavior of Jatropha curcas biodiesel," Renewable Energy, Elsevier, vol. 218(C).
    17. Zhou, Yuanxiang & Adebayo, Tomiwa Sunday & Yin, Weichuan & Abbas, Shujaat, 2023. "The co-movements among renewable energy, total environmental tax, and ecological footprint in the United Kingdom: Evidence from wavelet local multiple correlation analysis," Energy Economics, Elsevier, vol. 126(C).
    18. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    19. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).
    20. Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:443-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.