Multi-physics modeling of piezoelectric energy harvesters from vibrations for improved cantilever designs
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125870
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shin, Youn-Hwan & Jung, Inki & Noh, Myoung-Sub & Kim, Jeong Hun & Choi, Ji-Young & Kim, Sangtae & Kang, Chong-Yun, 2018. "Piezoelectric polymer-based roadway energy harvesting via displacement amplification module," Applied Energy, Elsevier, vol. 216(C), pages 741-750.
- Jung, Inki & Shin, Youn-Hwan & Kim, Sangtae & Choi, Ji-young & Kang, Chong-Yun, 2017. "Flexible piezoelectric polymer-based energy harvesting system for roadway applications," Applied Energy, Elsevier, vol. 197(C), pages 222-229.
- Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
- Cao, Yangsen & Sha, Aimin & Liu, Zhuangzhuang & Luan, Bo & Li, Jiarong & Jiang, Wei, 2020. "Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation," Energy, Elsevier, vol. 211(C).
- Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
- David Omooria Masara & Hassan El Gamal & Ossama Mokhiamar, 2021. "Split Cantilever Multi-Resonant Piezoelectric Energy Harvester for Low-Frequency Application," Energies, MDPI, vol. 14(16), pages 1-15, August.
- Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
- Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
- Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Song, Zhi, 2021. "Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests," Applied Energy, Elsevier, vol. 287(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
- Shi, Weijie & Chen, Chen & Yang, Chuanhui & Xian, Tongrui & Luo, Xiaohui & Zhao, Haixia, 2023. "Experimental and simulation study of a hydraulic piezoelectric energy harvester under different connection modes," Energy, Elsevier, vol. 281(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Lukai & Lu, Qing, 2019. "Numerical analysis of a new piezoelectric-based energy harvesting pavement system: Lessons from laboratory-based and field-based simulations," Applied Energy, Elsevier, vol. 235(C), pages 963-977.
- Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
- Wang, Jun & Liu, Zhiming & Ding, Guangya & Fu, Hongtao & Cai, Guojun, 2021. "Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system," Energy, Elsevier, vol. 229(C).
- Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.
- Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
- Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
- Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
- Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).
- Jeon, Deok Hwan & Cho, Jae Yong & Jhun, Jeong Pil & Ahn, Jung Hwan & Jeong, Sinwoo & Jeong, Se Yeong & Kumar, Anuruddh & Ryu, Chul Hee & Hwang, Wonseop & Park, Hansun & Chang, Cheulho & Lee, Hyoungjin, 2021. "A lever-type piezoelectric energy harvester with deformation-guiding mechanism for electric vehicle charging station on smart road," Energy, Elsevier, vol. 218(C).
- Wang, Chaohui & Cao, Hongyun & Wang, Shuai & Gao, Zhiwei, 2021. "Design and testing of road piezoelectric power generation device based on traffic environment applicability," Applied Energy, Elsevier, vol. 299(C).
- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Cao, Yangsen & Sha, Aimin & Liu, Zhuangzhuang & Luan, Bo & Li, Jiarong & Jiang, Wei, 2020. "Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation," Energy, Elsevier, vol. 211(C).
- Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
- Hong, Seong Do & Ahn, Jung Hwan & Kim, Kyung-Bum & Kim, Jeong Hun & Cho, Jae Yong & Woo, Min Sik & Song, Yewon & Hwang, Wonseop & Jeon, Deok Hwan & Kim, Jihoon & Jeong, Se Yeong & Woo, Sang Bum & Ryu,, 2022. "Uniform stress distribution road piezoelectric generator with free-fixed-end type central strike mechanism," Energy, Elsevier, vol. 239(PA).
- Wang, Shuai & Wang, Chaohui & Yuan, Huazhi & Ji, Xiaoping & Yu, Gongxin & Jia, Xiaodong, 2023. "Size effect of piezoelectric energy harvester for road with high efficiency electrical properties," Applied Energy, Elsevier, vol. 330(PB).
- Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
- Diogo Correia & Adelino Ferreira, 2021. "Energy Harvesting on Airport Pavements: State-of-the-Art," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
- Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
- Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
More about this item
Keywords
Cantilever; Resonant frequency; Piezoelectric energy harvesting; Finite element model; Laboratory verification; Parametric analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027566. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.