IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p205-d196272.html
   My bibliography  Save this article

Risk Assessment and Its Visualization of Power Tower under Typhoon Disaster Based on Machine Learning Algorithms

Author

Listed:
  • Hui Hou

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Shiwen Yu

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Hongbin Wang

    (Guangzhou Power Supply Bureau Co., Ltd., Guangzhou 510620, China)

  • Yong Huang

    (GuangDong Power GRID Co., Ltd., Electric Power Research Institute, Guangzhou 510080, China)

  • Hao Wu

    (GuangDong Power GRID Co., Ltd., Electric Power Research Institute, Guangzhou 510080, China)

  • Yan Xu

    (Department, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore)

  • Xianqiang Li

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Hao Geng

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

Abstract

For power system disaster prevention and mitigation, risk assessment and visualization under typhoon disaster have important scientific significance and engineering value. However, current studies have problems such as incomplete factors, strong subjectivity, complicated calculations, and so on. Therefore, a novel risk assessment and its visualization system consisting of a data layer, knowledge extraction layer, and visualization layer on power towers under typhoon disaster are proposed. On the data layer, a spatial multi-source heterogeneous information database is built based on equipment operation information, meteorological information, and geographic information. On the knowledge extraction layer, six intelligent risk prediction models are established based on machine learning algorithms by hyperparameter optimization. Then the relative optimal model is selected by comparing five evaluation indicators, and the combined model consisting of five relatively superior models is established by goodness of fit method with unequal weight. On the visualization layer, the predicted results are visualized with accuracy of 1 km × 1 km by ArcGIS 10.4. In results, the power tower damage risk assessment is carried out in a Chinese coastal city under the typhoon ‘Mujigae’. By comparing predicted distribution and similarity indicator of the combined model with those of the other models, it is shown that the combined model is superior not only in quality but also in quantity.

Suggested Citation

  • Hui Hou & Shiwen Yu & Hongbin Wang & Yong Huang & Hao Wu & Yan Xu & Xianqiang Li & Hao Geng, 2019. "Risk Assessment and Its Visualization of Power Tower under Typhoon Disaster Based on Machine Learning Algorithms," Energies, MDPI, vol. 12(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:205-:d:196272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Haibin & Davidson, Rachel A. & Apanasovich, Tatiyana V., 2008. "Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 897-912.
    2. Seung‐Ryong Han & Seth D. Guikema & Steven M. Quiring, 2009. "Improving the Predictive Accuracy of Hurricane Power Outage Forecasts Using Generalized Additive Models," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1443-1453, October.
    3. Han, Seung-Ryong & Guikema, Seth D. & Quiring, Steven M. & Lee, Kyung-Ho & Rosowsky, David & Davidson, Rachel A., 2009. "Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 199-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wenjie & Hou, Hui & Zhu, Shaohua & Liu, Qin & Wei, Ruizeng & He, Huan & Wang, Lei & Luo, Yingting, 2024. "An intelligent power grid emergency allocation technology considering secondary disaster and public opinion under typhoon disaster," Applied Energy, Elsevier, vol. 353(PA).
    2. Hui Hou & Hao Geng & Yong Huang & Hao Wu & Xixiu Wu & Shiwen Yu, 2019. "Damage Probability Assessment of Transmission Line-Tower System Under Typhoon Disaster, Based on Model-Driven and Data-Driven Views," Energies, MDPI, vol. 12(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    2. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    3. Seth D. Guikema & Steven M. Quiring & Seung‐Ryong Han, 2010. "Prestorm Estimation of Hurricane Damage to Electric Power Distribution Systems," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1744-1752, December.
    4. D. Brent McRoberts & Steven M. Quiring & Seth D. Guikema, 2018. "Improving Hurricane Power Outage Prediction Models Through the Inclusion of Local Environmental Factors," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2722-2737, December.
    5. Roshanak Nateghi & Seth Guikema & Steven M. Quiring, 2014. "Power Outage Estimation for Tropical Cyclones: Improved Accuracy with Simpler Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1069-1078, June.
    6. Oh, Seongmun & Jufri, Fauzan Hanif & Choi, Min-Hee & Jung, Jaesung, 2022. "A study of tropical cyclone impact on the power distribution grid in South Korea for estimating damage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Gina L. Tonn & Seth D. Guikema & Celso M. Ferreira & Steven M. Quiring, 2016. "Hurricane Isaac: A Longitudinal Analysis of Storm Characteristics and Power Outage Risk," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1936-1947, October.
    10. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Seung‐Ryong Han & Seth D. Guikema & Steven M. Quiring, 2009. "Improving the Predictive Accuracy of Hurricane Power Outage Forecasts Using Generalized Additive Models," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1443-1453, October.
    12. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    13. Roshanak Nateghi & Seth D. Guikema & Steven M. Quiring, 2011. "Comparison and Validation of Statistical Methods for Predicting Power Outage Durations in the Event of Hurricanes," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1897-1906, December.
    14. Royce A. Francis & Srinivas Reddy Geedipally & Seth D. Guikema & Soma Sekhar Dhavala & Dominique Lord & Sarah LaRocca, 2012. "Characterizing the Performance of the Conway‐Maxwell Poisson Generalized Linear Model," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 167-183, January.
    15. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    16. Otto, Räisänen & Susanne, Suvanto & Jouni, Haapaniemi & Jukka, Lassila, 2023. "Crown snow load outage risk model for overhead lines," Applied Energy, Elsevier, vol. 343(C).
    17. Mahyar Ghorbanzadeh & Mohammadreza Koloushani & Mehmet Baran Ulak & Eren Erman Ozguven & Reza Arghandeh Jouneghani, 2020. "Statistical and Spatial Analysis of Hurricane-induced Roadway Closures and Power Outages," Energies, MDPI, vol. 13(5), pages 1-18, March.
    18. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.
    19. Maliszewski, Paul J. & Larson, Elisabeth K. & Perrings, Charles, 2012. "Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 161-171.
    20. Feifei Yang & David W. Wanik & Diego Cerrai & Md Abul Ehsan Bhuiyan & Emmanouil N. Anagnostou, 2020. "Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration," Sustainability, MDPI, vol. 12(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:205-:d:196272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.