An updated review and perspective on efficient hydrogen generation via solar thermal water splitting
Author
Abstract
Suggested Citation
DOI: 10.1002/wene.528
Download full text from publisher
References listed on IDEAS
- Zhu, Liya & Lu, Youjun & Shen, Shaohua, 2016. "Solar fuel production at high temperatures using ceria as a dense membrane," Energy, Elsevier, vol. 104(C), pages 53-63.
- Hoskins, Amanda L. & Millican, Samantha L. & Czernik, Caitlin E. & Alshankiti, Ibraheam & Netter, Judy C. & Wendelin, Timothy J. & Musgrave, Charles B. & Weimer, Alan W., 2019. "Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle," Applied Energy, Elsevier, vol. 249(C), pages 368-376.
- Lidor, Alon & Aschwanden, Yves & Häseli, Jamina & Reckinger, Pit & Haueter, Philipp & Steinfeld, Aldo, 2023. "High-temperature heat recovery from a solar reactor for the thermochemical redox splitting of H2O and CO2," Applied Energy, Elsevier, vol. 329(C).
- Thanda, V.K. & Fend, Th. & Laaber, D. & Lidor, A. & von Storch, H. & Säck, J.P. & Hertel, J. & Lampe, J. & Menz, S. & Piesche, G. & Berger, S. & Lorentzou, S. & Syrigou, M. & Denk, Th. & Gonzales-Pard, 2022. "Experimental investigation of the applicability of a 250 kW ceria receiver/reactor for solar thermochemical hydrogen generation," Renewable Energy, Elsevier, vol. 198(C), pages 389-398.
- Christopher J. Bartel & Samantha L. Millican & Ann M. Deml & John R. Rumptz & William Tumas & Alan W. Weimer & Stephan Lany & Vladan Stevanović & Charles B. Musgrave & Aaron M. Holder, 2018. "Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
- Jessica T. Dahle & Yuji Arai, 2015. "Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles," IJERPH, MDPI, vol. 12(2), pages 1-26, January.
- Zhigang Zou & Jinhua Ye & Kazuhiro Sayama & Hironori Arakawa, 2001. "Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst," Nature, Nature, vol. 414(6864), pages 625-627, December.
- Wieckert, Christian & Palumbo, Robert & Frommherz, Ulrich, 2004. "A two-cavity reactor for solar chemical processes: heat transfer model and application to carbothermic reduction of ZnO," Energy, Elsevier, vol. 29(5), pages 771-787.
- Davenport, Timothy C. & Yang, Chih-Kai & Kucharczyk, Christopher J. & Ignatowich, Michael J. & Haile, Sossina M., 2016. "Maximizing fuel production rates in isothermal solar thermochemical fuel production," Applied Energy, Elsevier, vol. 183(C), pages 1098-1111.
- Koepf, E. & Villasmil, W. & Meier, A., 2016. "Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle," Applied Energy, Elsevier, vol. 165(C), pages 1004-1023.
- Lin, Meng & Haussener, Sophia, 2015. "Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods," Energy, Elsevier, vol. 88(C), pages 667-679.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
- Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
- Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
- Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
- Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
- Wang, Bo & Li, Xian & Zhu, Xuancan & Wang, Yuesen & Tian, Tian & Dai, Yanjun & Wang, Chi-Hwa, 2023. "An epitrochoidal rotary reactor for solar-driven hydrogen production based on the redox cycling of ceria: Thermodynamic analysis and geometry optimization," Energy, Elsevier, vol. 270(C).
- Lidor, Alon & Aschwanden, Yves & Häseli, Jamina & Reckinger, Pit & Haueter, Philipp & Steinfeld, Aldo, 2023. "High-temperature heat recovery from a solar reactor for the thermochemical redox splitting of H2O and CO2," Applied Energy, Elsevier, vol. 329(C).
- Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
- Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
- Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Lin, Meng & Reinhold, Jan & Monnerie, Nathalie & Haussener, Sophia, 2018. "Modeling and design guidelines for direct steam generation solar receivers," Applied Energy, Elsevier, vol. 216(C), pages 761-776.
- Lidor, A. & Fend, T. & Roeb, M. & Sattler, C., 2021. "High performance solar receiver–reactor for hydrogen generation," Renewable Energy, Elsevier, vol. 179(C), pages 1217-1232.
- Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
- Rahul R. Bhosale, 2023. "Recent Developments in Ceria-Driven Solar Thermochemical Water and Carbon Dioxide Splitting Redox Cycle," Energies, MDPI, vol. 16(16), pages 1-30, August.
- Ding, Qun & Zou, Xuejun & Ke, Jun & Dong, Yuying & Cui, Yubo & Lu, Guang & Ma, Hongchao, 2023. "S-scheme 3D/2D NiCo2O4@g-C3N4 hybridized system for boosting hydrogen production from water splitting," Renewable Energy, Elsevier, vol. 203(C), pages 677-685.
- Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
- Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
- Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
- Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:4:n:e528. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.