IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v13y2024i4ne528.html
   My bibliography  Save this article

An updated review and perspective on efficient hydrogen generation via solar thermal water splitting

Author

Listed:
  • Justin T. Tran
  • Kent J. Warren
  • Steven A. Wilson
  • Christopher L. Muhich
  • Charles B. Musgrave
  • Alan W. Weimer

Abstract

Solar thermal water splitting (STWS) produces renewable (or green) hydrogen from water using concentrated sunlight. Because STWS utilizes energy from the entire solar spectrum to drive the reduction–oxidation (redox) reactions that split water, it can achieve high theoretical solar‐to‐hydrogen efficiencies. In a two‐step STWS process, a metal oxide that serves as a redox mediator is first heated with concentrated sunlight to high temperatures (T >1000°C) to reduce it and evolve oxygen. In the second step, the reduced material is exposed to steam to reoxidize it to its original oxidation state and produce hydrogen. Various aspects of this process are comprehensively reviewed in this work, including the reduction and oxidation chemistries of active materials considered to date, the solar reactors developed to facilitate the STWS reactions, and the effects of operating conditions—including the recent innovation of elevated oxidant pressure—on efficiency. To conclude the review, a perspective on the future optimization of STWS is provided. This article is categorized under: Sustainable Energy > Solar Energy Emerging Technologies > Hydrogen and Fuel Cells Emerging Technologies > New Fuels

Suggested Citation

  • Justin T. Tran & Kent J. Warren & Steven A. Wilson & Christopher L. Muhich & Charles B. Musgrave & Alan W. Weimer, 2024. "An updated review and perspective on efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
  • Handle: RePEc:bla:wireae:v:13:y:2024:i:4:n:e528
    DOI: 10.1002/wene.528
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.528
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:4:n:e528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.