IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v275y2020ics0306261920308977.html
   My bibliography  Save this article

Assessing the potential of battery storage as a peaking capacity resource in the United States

Author

Listed:
  • Frazier, A. Will
  • Cole, Wesley
  • Denholm, Paul
  • Greer, Daniel
  • Gagnon, Pieter

Abstract

In 2018, the United States Federal Energy Regulatory Commission established an order requiring all energy market operators in their jurisdiction to allow storage resources to participate as capacity resources. In response to the order, each market operator specified a minimum duration for storage resources to meet or exceed to qualify as peaking capacity. In this work, we assess the impacts of minimum storage duration requirements on energy storage buildout and system operation through 2050 in the United States electricity grid. We also investigate the role that future capital cost reductions play in energy storage deployment in the United States. We use a national-scale capacity expansion model and allow the model to choose from a suite of competing technologies, including battery storage devices of various durations as it builds out a least-cost system. We consider scenarios different minimum storage durations and storage cost projections. We find there is substantial economic potential – greater than 100 GW in some cases – for storage with durations of ten hours or less to provide peaking capacity in the United States. We also find that storage deployment is sensitive to minimum storage duration requirements. Longer requirements reduce the amount of storage deployed. Shorter requirements lead to more deployment, but if they are not adjusted to account for the declining capacity credit of storage, there is greater risk for instances of unserved energy. Our results indicate that the design and implementation of duration requirements can have substantial impacts on storage deployment and broader system reliability.

Suggested Citation

  • Frazier, A. Will & Cole, Wesley & Denholm, Paul & Greer, Daniel & Gagnon, Pieter, 2020. "Assessing the potential of battery storage as a peaking capacity resource in the United States," Applied Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308977
    DOI: 10.1016/j.apenergy.2020.115385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    2. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    3. Gan, Wei & Ai, Xiaomeng & Fang, Jiakun & Yan, Mingyu & Yao, Wei & Zuo, Wenping & Wen, Jinyu, 2019. "Security constrained co-planning of transmission expansion and energy storage," Applied Energy, Elsevier, vol. 239(C), pages 383-394.
    4. Murphy, Sinnott & Lavin, Luke & Apt, Jay, 2020. "Resource adequacy implications of temperature-dependent electric generator availability," Applied Energy, Elsevier, vol. 262(C).
    5. Xingning Han & Shiwu Liao & Xiaomeng Ai & Wei Yao & Jinyu Wen, 2017. "Determining the Minimal Power Capacity of Energy Storage to Accommodate Renewable Generation," Energies, MDPI, vol. 10(4), pages 1-17, April.
    6. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    8. Reimers, Andrew & Cole, Wesley & Frew, Bethany, 2019. "The impact of planning reserve margins in long-term planning models of the electricity sector," Energy Policy, Elsevier, vol. 125(C), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muaddi, Saad & Singh, Chanan, 2022. "Investigating capacity credit sensitivity to reliability metrics and computational methodologies," Applied Energy, Elsevier, vol. 325(C).
    2. Pantelis A. Dratsas & Georgios N. Psarros & Stavros A. Papathanassiou, 2021. "Battery Energy Storage Contribution to System Adequacy," Energies, MDPI, vol. 14(16), pages 1-22, August.
    3. Anwar, Muhammad Bashar & Guo, Nongchao & Sun, Yinong & Frew, Bethany, 2024. "Can wholesale electricity markets achieve resource adequacy and high clean energy generation targets in the presence of self-interested actors?," Applied Energy, Elsevier, vol. 359(C).
    4. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    5. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    6. Alizadeh, Ali & Esfahani, Moein & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2024. "A useable multi-level BESSs sizing model for low-level data accessibility with risk assessment application under marketization and high uncertainties," Energy, Elsevier, vol. 290(C).
    7. Miao Zhou & Jun Liu & Aihong Tang & Xinyu You, 2024. "Capacity Demand Analysis of Rural Biogas Power Generation System with Independent Operation Considering Source-Load Uncertainty," Energies, MDPI, vol. 17(8), pages 1-15, April.
    8. Wang, Renshun & Wang, Shilong & Geng, Guangchao & Jiang, Quanyuan, 2024. "Multi-time-scale capacity credit assessment of renewable and energy storage considering complex operational time series," Applied Energy, Elsevier, vol. 355(C).
    9. Frew, Bethany & Bashar Anwar, Muhammad & Dalvi, Sourabh & Brooks, Adria, 2023. "The interaction of wholesale electricity market structures under futures with decarbonization policy goals: A complexity conundrum," Applied Energy, Elsevier, vol. 339(C).
    10. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    11. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    12. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cole, Wesley & Greer, Daniel & Ho, Jonathan & Margolis, Robert, 2020. "Considerations for maintaining resource adequacy of electricity systems with high penetrations of PV and storage," Applied Energy, Elsevier, vol. 279(C).
    2. Sun, Yinong & Frew, Bethany & Dalvi, Sourabh & Dhulipala, Surya C., 2022. "Insights into methodologies and operational details of resource adequacy assessment: A case study with application to a broader flexibility framework," Applied Energy, Elsevier, vol. 328(C).
    3. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    4. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    5. Varghese, Sushant & Sioshansi, Ramteen, 2020. "The price is right? How pricing and incentive mechanisms in California incentivize building distributed hybrid solar and energy-storage systems," Energy Policy, Elsevier, vol. 138(C).
    6. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    7. Bromley-Dulfano, Isaac & Florez, Julian & Craig, Michael T., 2021. "Reliability benefits of wide-area renewable energy planning across the Western United States," Renewable Energy, Elsevier, vol. 179(C), pages 1487-1499.
    8. Dany H. Huanca & Djalma M. Falcão & Murilo E. C. Bento, 2024. "Transmission Expansion Planning Considering Storage, Flexible AC Transmission System, Losses, and Contingencies to Integrate Wind Power," Energies, MDPI, vol. 17(7), pages 1-23, April.
    9. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    10. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    11. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    14. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    16. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    17. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    18. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    19. Dugoua, Eugenie & Dumas, Marion, 2024. "Coordination dynamics between fuel cell and battery technologies in the transition to clean cars," LSE Research Online Documents on Economics 124029, London School of Economics and Political Science, LSE Library.
    20. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.