IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5146-d618293.html
   My bibliography  Save this article

Battery Energy Storage Contribution to System Adequacy

Author

Listed:
  • Pantelis A. Dratsas

    (School of Electrical and Computer Engineering, Zografou Campus, 9, Iroon Polytechniou str, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece)

  • Georgios N. Psarros

    (School of Electrical and Computer Engineering, Zografou Campus, 9, Iroon Polytechniou str, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece)

  • Stavros A. Papathanassiou

    (School of Electrical and Computer Engineering, Zografou Campus, 9, Iroon Polytechniou str, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece)

Abstract

The objective of this paper is to evaluate the contribution of energy storage systems to resource adequacy of power systems experiencing increased levels of renewables penetration. To this end, a coherent methodology for the assessment of system capacity adequacy and the calculation of energy storage capacity value is presented, utilizing the Monte Carlo technique. The main focus is on short-duration storage, mainly battery energy storage systems (BESS), whose capacity values are determined for different power and energy configurations. Alternative operating policies (OPs) are implemented, prioritizing system cost or reliability, to demonstrate the significant effect storage management may have on its contribution to system adequacy. A medium-sized island system is used as a study case, applying a mixed integer linear programming (MILP) generation scheduling model to simulate BESS and system operation under each OP, in order to determine capacity contribution and overall performance in terms of renewable energy sources (RES) penetration, system operating cost and BESS lifetime expectancy. This study reveals that BESS contribution to system adequacy can be significant (capacity credit values up to ~85%), with energy capacity proving to be the most significant parameter. Energy storage may at the same time enhance system reliability, reduce generation cost and support RES integration, provided that it is appropriately managed; a combined reliability-oriented and cost-driven management approach is shown to yield optimal results.

Suggested Citation

  • Pantelis A. Dratsas & Georgios N. Psarros & Stavros A. Papathanassiou, 2021. "Battery Energy Storage Contribution to System Adequacy," Energies, MDPI, vol. 14(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5146-:d:618293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    2. Psarros, Georgios N. & Nanou, Sotirios I. & Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2018. "Generation scheduling in non-interconnected islands with high RES penetration," Renewable Energy, Elsevier, vol. 115(C), pages 338-352.
    3. Jiashen Teh, 2018. "Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System," Energies, MDPI, vol. 11(10), pages 1-12, October.
    4. Papathanassiou, Stavros A. & Boulaxis, Nikos G., 2006. "Power limitations and energy yield evaluation for wind farms operating in island systems," Renewable Energy, Elsevier, vol. 31(4), pages 457-479.
    5. Frazier, A. Will & Cole, Wesley & Denholm, Paul & Greer, Daniel & Gagnon, Pieter, 2020. "Assessing the potential of battery storage as a peaking capacity resource in the United States," Applied Energy, Elsevier, vol. 275(C).
    6. Georgios N. Psarros & Stavros A. Papathanassiou, 2019. "Comparative Assessment of Priority Listing and Mixed Integer Linear Programming Unit Commitment Methods for Non-Interconnected Island Systems," Energies, MDPI, vol. 12(4), pages 1-23, February.
    7. Lingxi Zhang & Yutian Zhou & Damian Flynn & Joseph Mutale & Pierluigi Mancarella, 2017. "System-Level Operational and Adequacy Impact Assessment of Photovoltaic and Distributed Energy Storage, with Consideration of Inertial Constraints, Dynamic Reserve and Interconnection Flexibility," Energies, MDPI, vol. 10(7), pages 1-34, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Adolfo Gómez-Ramírez & Carlos Meza & Gonzalo Mora-Jiménez & José Rodrigo Rojas Morales & Luis García-Santander, 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition," Energies, MDPI, vol. 16(11), pages 1-20, May.
    2. Vitor Hugo Ferreira & Rubens Lucian da Silva Correa & Angelo Cesar Colombini & Márcio Zamboti Fortes & Flávio Luis de Mello & Fernando Carvalho Cid de Araujo & Natanael Rodrigues Pereira, 2021. "Big Data Analytics for Spatio-Temporal Service Orders Demand Forecasting in Electric Distribution Utilities," Energies, MDPI, vol. 14(23), pages 1-16, November.
    3. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    2. Psarros, Georgios N. & Papathanassiou, Stavros A., 2020. "Internal dispatch for RES-storage hybrid power stations in isolated grids," Renewable Energy, Elsevier, vol. 147(P1), pages 2141-2150.
    3. Psarros, Georgios N. & Dratsas, Pantelis A. & Papathanassiou, Stavros A., 2021. "A comparison between central- and self-dispatch storage management principles in island systems," Applied Energy, Elsevier, vol. 298(C).
    4. Muaddi, Saad & Singh, Chanan, 2022. "Investigating capacity credit sensitivity to reliability metrics and computational methodologies," Applied Energy, Elsevier, vol. 325(C).
    5. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    6. Georgios N. Psarros & Stavros A. Papathanassiou, 2019. "Comparative Assessment of Priority Listing and Mixed Integer Linear Programming Unit Commitment Methods for Non-Interconnected Island Systems," Energies, MDPI, vol. 12(4), pages 1-23, February.
    7. Stelios Loumakis & Evgenia Giannini & Zacharias Maroulis, 2019. "Renewable Energy Sources Penetration in Greece: Characteristics and Seasonal Variation of the Electricity Demand Share Covering," Energies, MDPI, vol. 12(12), pages 1-20, June.
    8. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    9. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    10. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    11. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    12. Paik, Chunhyun & Chung, Yongjoo & Kim, Young Jin, 2021. "ELCC-based capacity credit estimation accounting for uncertainties in capacity factors and its application to solar power in Korea," Renewable Energy, Elsevier, vol. 164(C), pages 833-841.
    13. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    14. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    15. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    16. Ahmed Alzahrani & Hussain Alharthi & Muhammad Khalid, 2019. "Minimization of Power Losses through Optimal Battery Placement in a Distributed Network with High Penetration of Photovoltaics," Energies, MDPI, vol. 13(1), pages 1-16, December.
    17. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Insights from a Comprehensive Capacity Expansion Planning Modeling on the Operation and Value of Hydropower Plants under High Renewable Penetrations," Energies, MDPI, vol. 17(7), pages 1-29, April.
    18. Shahrukh Khan & Arshad Mahmood & Mohammad Zaid & Mohd Tariq & Chang-Hua Lin & Javed Ahmad & Basem Alamri & Ahmad Alahmadi, 2021. "A High Step-up DC-DC Converter Based on the Voltage Lift Technique for Renewable Energy Applications," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    19. Troncoso, E. & Newborough, M., 2010. "Electrolysers as a load management mechanism for power systems with wind power and zero-carbon thermal power plant," Applied Energy, Elsevier, vol. 87(1), pages 1-15, January.
    20. Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2023. "Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5146-:d:618293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.