IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics0306261920306309.html
   My bibliography  Save this article

A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers

Author

Listed:
  • Elkazaz, Mahmoud
  • Sumner, Mark
  • Naghiyev, Eldar
  • Pholboon, Seksak
  • Davies, Richard
  • Thomas, David

Abstract

This paper presents a hierarchical two-layer home energy management system to reduce daily household energy costs and maximize photovoltaic self-consumption. The upper layer comprises a model predictive controller which optimizes household energy usage using a mixed-integer linear programming optimization; the lower layer comprises a rule-based real-time controller, to determine the optimal power settings of the home battery storage system. The optimization process also includes load shifting and battery degradation costs. The upper layer determines the operating schedule for shiftable domestic appliances and the profile for energy storage for the next 24 h. This profile is then passed to the lower energy management layer, which compensates for the effects of forecast uncertainties and sample time resolution. The effectiveness of the proposed home energy management system is demonstrated by comparing its performance with a single-layer management system. For the same battery size, using the hierarchical two-layer home energy management system can achieve annual household energy payment reduction of 27.8% and photovoltaic self-consumption of 91.1% compared to using a single layer home energy management system. The results show the capability of the hierarchical home energy management system to reduce household utility bills and maximize photovoltaic self-consumption. Experimental studies on a laboratory-based house emulation rig demonstrate the feasibility of the proposed home energy management system.

Suggested Citation

  • Elkazaz, Mahmoud & Sumner, Mark & Naghiyev, Eldar & Pholboon, Seksak & Davies, Richard & Thomas, David, 2020. "A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306309
    DOI: 10.1016/j.apenergy.2020.115118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    2. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    3. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    4. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    5. Jin, Xin & Baker, Kyri & Christensen, Dane & Isley, Steven, 2017. "Foresee: A user-centric home energy management system for energy efficiency and demand response," Applied Energy, Elsevier, vol. 205(C), pages 1583-1595.
    6. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
    7. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
    8. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    2. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    3. Salgado, Marcelo & Negrete-Pincetic, Matias & Lorca, Álvaro & Olivares, Daniel, 2021. "A low-complexity decision model for home energy management systems," Applied Energy, Elsevier, vol. 294(C).
    4. Xincheng Pan & Rahmat Khezri & Amin Mahmoudi & Amirmehdi Yazdani & GM Shafiullah, 2021. "Energy Management Systems for Grid-Connected Houses with Solar PV and Battery by Considering Flat and Time-of-Use Electricity Rates," Energies, MDPI, vol. 14(16), pages 1-21, August.
    5. Elkazaz, Mahmoud & Sumner, Mark & Thomas, David, 2021. "A hierarchical and decentralized energy management system for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 291(C).
    6. Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    7. Dinh, Huy Truong & Lee, Kyu-haeng & Kim, Daehee, 2022. "Supervised-learning-based hour-ahead demand response for a behavior-based home energy management system approximating MILP optimization," Applied Energy, Elsevier, vol. 321(C).
    8. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Buxiang Zhou & Jiale Wu & Tianlei Zang & Yating Cai & Binjie Sun & Yiwei Qiu, 2023. "Emergency Dispatch Approach for Power Systems with Hybrid Energy Considering Thermal Power Unit Ramping," Energies, MDPI, vol. 16(10), pages 1-25, May.
    10. Eros D. Escobar & Tatiana Manrique & Idi A. Isaac, 2022. "Campus Microgrid Data-Driven Model Identification and Secondary Voltage Control," Energies, MDPI, vol. 15(21), pages 1-19, October.
    11. Md Masud Rana & Akhlaqur Rahman & Moslem Uddin & Md Rasel Sarkar & SK. A. Shezan & C M F S Reza & Md. Fatin Ishraque & Mohammad Belayet Hossain, 2022. "Efficient Energy Distribution for Smart Household Applications," Energies, MDPI, vol. 15(6), pages 1-19, March.
    12. Henggeler Antunes, Carlos & Alves, Maria João & Soares, Inês, 2022. "A comprehensive and modular set of appliance operation MILP models for demand response optimization," Applied Energy, Elsevier, vol. 320(C).
    13. Nitin S. Solke & Pritesh Shah & Ravi Sekhar & T. P. Singh, 2022. "Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(1), pages 89-112, March.
    14. Escobar, Eros D. & Betancur, Daniel & Manrique, Tatiana & Isaac, Idi A., 2023. "Model predictive real-time architecture for secondary voltage control of microgrids," Applied Energy, Elsevier, vol. 345(C).
    15. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Elkazaz & Mark Sumner & Seksak Pholboon & Richard Davies & David Thomas, 2020. "Performance Assessment of an Energy Management System for a Home Microgrid with PV Generation," Energies, MDPI, vol. 13(13), pages 1-23, July.
    2. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    3. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    4. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    5. van Leeuwen, Gijs & AlSkaif, Tarek & Gibescu, Madeleine & van Sark, Wilfried, 2020. "An integrated blockchain-based energy management platform with bilateral trading for microgrid communities," Applied Energy, Elsevier, vol. 263(C).
    6. Md Masud Rana & Akhlaqur Rahman & Moslem Uddin & Md Rasel Sarkar & SK. A. Shezan & C M F S Reza & Md. Fatin Ishraque & Mohammad Belayet Hossain, 2022. "Efficient Energy Distribution for Smart Household Applications," Energies, MDPI, vol. 15(6), pages 1-19, March.
    7. Jose Luis Sánchez-Jiménez & Francisco José Muñoz-Rodríguez & Gabino Jiménez-Castillo & Antonio Javier Martinez-Calahorro & Catalina Rus-Casas, 2023. "Analysis of Different Scenarios to Include PV Rooftop Systems with Battery Energy Storage Systems in Olive Mills," Energies, MDPI, vol. 17(1), pages 1-30, December.
    8. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    9. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    10. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    11. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    12. Elma, Onur & Selamogullari, Ugur Savas, 2015. "A new home energy management algorithm with voltage control in a smart home environment," Energy, Elsevier, vol. 91(C), pages 720-731.
    13. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    14. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    15. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    16. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    17. Cédric Clastres & Olivier Rebenaque & Patrick Jochem, 2020. "Provision of Demand Response from the prosumers in multiple markets," Working Papers hal-03167446, HAL.
    18. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    19. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    20. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.