IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4213-d1151512.html
   My bibliography  Save this article

Emergency Dispatch Approach for Power Systems with Hybrid Energy Considering Thermal Power Unit Ramping

Author

Listed:
  • Buxiang Zhou

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Jiale Wu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Tianlei Zang

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Yating Cai

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Binjie Sun

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Yiwei Qiu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

Abstract

Future power systems will face more extreme operating condition scenarios, and system emergency dispatch will face more severe challenges. The use of distributed control is a well-designed way to handle this. It enables multi-energy complementation by means of autonomous communication, which greatly improves the flexibility of the grid. First, in the context of global energy conservation and emission reduction, this paper adopts the energy usage method of “renewable energy is the main source of energy, supplemented by thermal power and energy storage” to reduce the system abandoned wind (light) rate while supplementing the energy storage capacity. Second, a consensus algorithm is added to the system while considering the coordination between thermal units and energy storage. An “interface” for autonomous communication between thermal units and energy storage is created using the incremental cost of each agent. To address the recurring issue of power imbalance during emergency dispatch of the system, the consensus algorithm is enhanced so that the communication interval varies with the unit rate. This is based on the climbing characteristics of each thermal power unit. Finally, the effectiveness of the proposed method is verified in an IEEE-30 bus system.

Suggested Citation

  • Buxiang Zhou & Jiale Wu & Tianlei Zang & Yating Cai & Binjie Sun & Yiwei Qiu, 2023. "Emergency Dispatch Approach for Power Systems with Hybrid Energy Considering Thermal Power Unit Ramping," Energies, MDPI, vol. 16(10), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4213-:d:1151512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elkazaz, Mahmoud & Sumner, Mark & Naghiyev, Eldar & Pholboon, Seksak & Davies, Richard & Thomas, David, 2020. "A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers," Applied Energy, Elsevier, vol. 269(C).
    2. Zhilin Lyu & Xiao Yang & Yiyi Zhang & Junhui Zhao, 2020. "Bi-Level Optimal Strategy of Islanded Multi-Microgrid Systems Based on Optimal Power Flow and Consensus Algorithm," Energies, MDPI, vol. 13(7), pages 1-19, March.
    3. Zhang, Zhaoyi & Shang, Lei & Liu, Chengxi & Lai, Qiupin & Jiang, Youjin, 2023. "Consensus-based distributed optimal power flow using gradient tracking technique for short-term power fluctuations," Energy, Elsevier, vol. 264(C).
    4. Chi Cao & Jun Xie & Dong Yue & Chongxin Huang & Jixiang Wang & Shuyang Xu & Xingying Chen, 2017. "Distributed Economic Dispatch of Virtual Power Plant under a Non-Ideal Communication Network," Energies, MDPI, vol. 10(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianlei Zang & Zian Wang & Xiaoguang Wei & Yi Zhou & Jiale Wu & Buxiang Zhou, 2023. "Current Status and Perspective of Vulnerability Assessment of Cyber-Physical Power Systems Based on Complex Network Theory," Energies, MDPI, vol. 16(18), pages 1-38, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    2. Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
    3. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    4. Furquan Nadeem & Mohd Asim Aftab & S.M. Suhail Hussain & Ikbal Ali & Prashant Kumar Tiwari & Arup Kumar Goswami & Taha Selim Ustun, 2019. "Virtual Power Plant Management in Smart Grids with XMPP Based IEC 61850 Communication," Energies, MDPI, vol. 12(12), pages 1-20, June.
    5. Jing Qiu & Junhua Zhao & Dongxiao Wang & Yu Zheng, 2017. "Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost," Energies, MDPI, vol. 10(7), pages 1-19, July.
    6. Escobar, Eros D. & Betancur, Daniel & Manrique, Tatiana & Isaac, Idi A., 2023. "Model predictive real-time architecture for secondary voltage control of microgrids," Applied Energy, Elsevier, vol. 345(C).
    7. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    8. Md Masud Rana & Akhlaqur Rahman & Moslem Uddin & Md Rasel Sarkar & SK. A. Shezan & C M F S Reza & Md. Fatin Ishraque & Mohammad Belayet Hossain, 2022. "Efficient Energy Distribution for Smart Household Applications," Energies, MDPI, vol. 15(6), pages 1-19, March.
    9. Liwei Ju & Peng Li & Qinliang Tan & Zhongfu Tan & GejiriFu De, 2018. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses," Energies, MDPI, vol. 11(11), pages 1-28, October.
    10. Nitin S. Solke & Pritesh Shah & Ravi Sekhar & T. P. Singh, 2022. "Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(1), pages 89-112, March.
    11. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    12. Elkazaz, Mahmoud & Sumner, Mark & Thomas, David, 2021. "A hierarchical and decentralized energy management system for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 291(C).
    13. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    14. Cristian Hoyos-Velandia & Lina Ramirez-Hurtado & Jaime Quintero-Restrepo & Ricardo Moreno-Chuquen & Francisco Gonzalez-Longatt, 2022. "Cost Functions for Generation Dispatching in Microgrids for Non-Interconnected Zones in Colombia," Energies, MDPI, vol. 15(7), pages 1-14, March.
    15. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    16. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    17. Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    18. Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
    19. Yujiang Ye & Ruifeng Shi & Yuqin Gao & Xiaolei Ma & Di Wang, 2023. "Two-Stage Optimal Scheduling of Highway Self-Consistent Energy System in Western China," Energies, MDPI, vol. 16(5), pages 1-18, March.
    20. Maryam Khanbaghi & Aleksandar Zecevic, 2022. "Stochastic Distributed Control for Arbitrarily Connected Microgrid Clusters," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4213-:d:1151512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.