IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v320y2022ics0306261922005189.html
   My bibliography  Save this article

A comprehensive and modular set of appliance operation MILP models for demand response optimization

Author

Listed:
  • Henggeler Antunes, Carlos
  • Alves, Maria João
  • Soares, Inês

Abstract

Demand response programs are essential to enable accommodating larger shares of variable power generation based on renewable sources, the deployment of which is imperative for decarbonizing the economy and mitigating global warming. Consumers/prosumers are increasingly exposed to and may benefit from time-differentiated energy prices aimed to induce changes in regular consumption patterns. These changes are also beneficial for retailers and grid operators in face of the variability of wholesale market prices, renewable energy availability and grid conditions. The optimization models to be implemented in autonomous home energy management systems require a rigorous modeling of appliance operation to generate effective load scheduling solutions, respecting their physical operation principles and use patterns in everyday life. A balance should be sought between the detail level of optimization models and the computational requirements to generate usable solutions having in mind their implementation in low-cost processors. This paper presents a comprehensive and modular set of mixed-integer linear programming models aimed at enabling their seamless incorporation in home energy management systems, allowing for the integrated optimization of all energy resources (exchanges with the grid, load management, electric vehicle and stationary battery, local microgeneration). Detailed energy consumption optimization models for shiftable, interruptible and thermostatic loads are presented, also including the power cost component and ways of dealing with user's discomfort. The modular models are presented in a building block manner enhancing the flexibility of their utilization in overall models with different objective functions encompassing the economic and comfort dimensions. Computational results are presented for a case study using actual data, which considers a time-of-use tariff with six periods. In addition to comparing with a plain tariff scheme, different consumer profiles are simulated to assess the impact of comfort requirements on cost. These results show that whenever consumers have the flexibility to change their consumption patterns, they are able to lower the net electricity bill by having an energy management system endowed with the models herein proposed to make optimized decisions on their behalf.

Suggested Citation

  • Henggeler Antunes, Carlos & Alves, Maria João & Soares, Inês, 2022. "A comprehensive and modular set of appliance operation MILP models for demand response optimization," Applied Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922005189
    DOI: 10.1016/j.apenergy.2022.119142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Mohseni, Amin & Mortazavi, Seyed Saeidollah & Ghasemi, Ahmad & Nahavandi, Ali & Talaei abdi, Masoud, 2017. "The application of household appliances' flexibility by set of sequential uninterruptible energy phases model in the day-ahead planning of a residential microgrid," Energy, Elsevier, vol. 139(C), pages 315-328.
    3. Elkazaz, Mahmoud & Sumner, Mark & Naghiyev, Eldar & Pholboon, Seksak & Davies, Richard & Thomas, David, 2020. "A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers," Applied Energy, Elsevier, vol. 269(C).
    4. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    5. Soares, Ana & Gomes, Álvaro & Antunes, Carlos Henggeler, 2014. "Categorization of residential electricity consumption as a basis for the assessment of the impacts of demand response actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 490-503.
    6. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.
    7. Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
    8. Nan, Sibo & Zhou, Ming & Li, Gengyin, 2018. "Optimal residential community demand response scheduling in smart grid," Applied Energy, Elsevier, vol. 210(C), pages 1280-1289.
    9. Soares, Inês & Alves, Maria João & Antunes, Carlos Henggeler, 2020. "Designing time-of-use tariffs in electricity retail markets using a bi-level model – Estimating bounds when the lower level problem cannot be exactly solved," Omega, Elsevier, vol. 93(C).
    10. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    11. Carlos Henggeler Antunes & Maria João Alves & Billur Ecer, 2020. "Bilevel optimization to deal with demand response in power grids: models, methods and challenges," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 814-842, October.
    12. Salgado, Marcelo & Negrete-Pincetic, Matias & Lorca, Álvaro & Olivares, Daniel, 2021. "A low-complexity decision model for home energy management systems," Applied Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2024. "Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources," Applied Energy, Elsevier, vol. 364(C).
    2. Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).
    3. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    4. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    5. Huang, Chung-Ting & Scott, Ian J., 2024. "Peer-to-peer multi-period energy market with flexible scheduling on a scalable and cost-effective blockchain," Applied Energy, Elsevier, vol. 367(C).
    6. Wu, Jiaman & Lu, Chenbei & Wu, Chenye & Shi, Jian & Gonzalez, Marta C. & Wang, Dan & Han, Zhu, 2024. "A cluster-based appliance-level-of-use demand response program design," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salgado, Marcelo & Negrete-Pincetic, Matias & Lorca, Álvaro & Olivares, Daniel, 2021. "A low-complexity decision model for home energy management systems," Applied Energy, Elsevier, vol. 294(C).
    2. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    3. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    4. Jansen, Malte & Gross, Rob & Staffell, Iain, 2024. "Quantitative evidence for modelling electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Heydarian-Forushani, Ehsan & Golshan, Mohamad Esmail Hamedani & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "A comprehensive linear model for demand response optimization problem," Energy, Elsevier, vol. 209(C).
    6. Madia Safdar & Ghulam Amjad Hussain & Matti Lehtonen, 2019. "Costs of Demand Response from Residential Customers’ Perspective," Energies, MDPI, vol. 12(9), pages 1-16, April.
    7. Ricardo Faia & Pedro Faria & Zita Vale & João Spinola, 2019. "Demand Response Optimization Using Particle Swarm Algorithm Considering Optimum Battery Energy Storage Schedule in a Residential House," Energies, MDPI, vol. 12(9), pages 1-18, April.
    8. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    9. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    10. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Carlos Henggeler Antunes & Maria João Alves & Billur Ecer, 2020. "Bilevel optimization to deal with demand response in power grids: models, methods and challenges," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 814-842, October.
    12. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    13. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    15. Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
    16. Beraldi, Patrizia & Khodaparasti, Sara, 2023. "Designing electricity tariffs in the retail market: A stochastic bi-level approach," International Journal of Production Economics, Elsevier, vol. 257(C).
    17. Arega Getaneh Abate & Rosana Riccardi & Carlos Ruiz, 2021. "Dynamic tariff-based demand response in retail electricity market under uncertainty," Papers 2105.03405, arXiv.org, revised Nov 2024.
    18. Morteza Vahid-Ghavidel & Mohammad Sadegh Javadi & Matthew Gough & Sérgio F. Santos & Miadreza Shafie-khah & João P.S. Catalão, 2020. "Demand Response Programs in Multi-Energy Systems: A Review," Energies, MDPI, vol. 13(17), pages 1-17, August.
    19. Saavedra, Aldo & Negrete-Pincetic, Matias & Rodríguez, Rafael & Salgado, Marcelo & Lorca, Álvaro, 2022. "Flexible load management using flexibility bands," Applied Energy, Elsevier, vol. 317(C).
    20. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922005189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.