IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220310847.html
   My bibliography  Save this article

The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell

Author

Listed:
  • Dong, Pengcheng
  • Xie, Gongnan
  • Ni, Meng

Abstract

In order to improve the mass transfer and the energy performance of a Proton Exchange Membrane Fuel Cell (PEMFC), five different kind of block shapes in the flow channel are proposed and evaluated numerically. It is found that the use of blocks in the gas channel enhances the mass transfer due to the generation of a nozzle-type effect in the channel. Results shows that the performances of PEMFCs with the five blocked channels [Cases B–F] can be improved comparing with that of the conventional flow channel without block [Case A], and Case D performs the best. The electrochemical conversion efficiency and effective power are improved by 15.58% and 15.77%, respectively. Further, by observing the block heights (0.4, 0.5 and 0.6) and spatial intervals (2.5, 5.0 and 8.0) of the above optimal shape [Case D] on the energy performances, these improvements can be raised to 17.09% and 16.95%, respectively.

Suggested Citation

  • Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2020. "The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220310847
    DOI: 10.1016/j.energy.2020.117977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wilberforce, Tabbi & Ijaodola, O. & Ogungbemi, Emmanuel & Khatib, F.N. & Leslie, T. & El-Hassan, Zaki & Thomposon, J. & Olabi, A.G., 2019. "Technical evaluation of proton exchange membrane (PEM) fuel cell performance – A review of the effects of bipolar plates coating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Hosseini, Mirollah & Afrouzi, Hamid Hassanzadeh & Arasteh, Hossein & Toghraie, Davood, 2019. "Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an open-ended anode using agglomerate model: A CFD study," Energy, Elsevier, vol. 188(C).
    3. Cai, Yonghua & Fang, Zhou & Chen, Ben & Yang, Tianqi & Tu, Zhengkai, 2018. "Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design," Energy, Elsevier, vol. 161(C), pages 28-37.
    4. Ashrafi, Moosa & Kanani, Homayoon & Shams, Mehrzad, 2018. "Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields," Energy, Elsevier, vol. 147(C), pages 317-328.
    5. Havaej, P., 2019. "A numerical investigation of the performance of Polymer Electrolyte Membrane fuel cell with the converging-diverging flow field using two-phase flow modeling," Energy, Elsevier, vol. 182(C), pages 656-672.
    6. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    7. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    8. Taner, Tolga, 2018. "Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations," Energy, Elsevier, vol. 143(C), pages 284-294.
    9. Perng, Shiang-Wuu & Wu, Horng-Wen, 2011. "Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel," Applied Energy, Elsevier, vol. 88(1), pages 52-67, January.
    10. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Flores-Hernández, J.R. & Botte, G.G. & Pérez-Sicairos, S. & Romero-Castañon, T. & Reynoso-Soto, E. & Félix-Navarro, R.M., 2019. "Pt-Au nanoparticles on graphene for oxygen reduction reaction: Stability and performance on proton exchange membrane fuel cell," Energy, Elsevier, vol. 181(C), pages 1225-1234.
    11. Wu, Horng-Wen & Shih, Gin-Jang & Chen, Yi-Bin, 2018. "Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement," Applied Energy, Elsevier, vol. 220(C), pages 47-58.
    12. Iranzo, A. & Arredondo, C.H. & Kannan, A.M. & Rosa, F., 2020. "Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Peijian & Yang, Dehui & Zhao, Yang & Wang, Hongyu & Yang, Guogang & Li, Shian & Sun, Juncai, 2024. "Numerical investigation on designs and performances of multi-dimensional forced convection flow field design of proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 231(C).
    2. Ghasabehi, Mehrdad & Ghanbari, Sina & Asadi, Mohammad Reza & Shams, Mehrzad & Kanani, Homayoon, 2024. "Optimization of baffle and tapering integration in the PEM fuel cell flow field employing artificial intelligence," Energy, Elsevier, vol. 302(C).
    3. Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
    4. Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
    5. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    6. Zeng, Tao & Zhang, Caizhi & Zhou, Anjian & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Chen, Jinrui & Foley, Aoife M., 2021. "Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control," Energy, Elsevier, vol. 230(C).
    7. Zhang, Shuanyang & Liu, Shun & Xu, Hongtao & Liu, Gaojie & Wang, Ke, 2022. "Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design," Energy, Elsevier, vol. 239(PB).
    8. Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2021. "Improved energy performance of a PEM fuel cell by introducing discontinuous S-shaped and crescent ribs into flowing channels," Energy, Elsevier, vol. 222(C).
    9. Yonghua Cai & Jingming Sun & Fan Wei & Ben Chen, 2022. "Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(10), pages 1-19, May.
    10. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    11. Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
    12. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    13. Guodong Zhang & Zhen Guan & Da Li & Guoxiang Li & Shuzhan Bai & Ke Sun & Hao Cheng, 2023. "Optimization Design of a Parallel Flow Field for PEMFC with Bosses in Flow Channels," Energies, MDPI, vol. 16(14), pages 1-26, July.
    14. Cai, Yonghua & Wu, Di & Sun, Jingming & Chen, Ben, 2021. "The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC," Energy, Elsevier, vol. 222(C).
    15. Yang, Laishun & Cui, Yi & Wang, Zhen & Shi, Luhao & Zhao, Yang & Sun, Peipei & Wang, Cuiping, 2024. "Optimization of the structure and cathode operating parameters of a serpentine PEMFC with longitudinal vortex generators by response surface method," Renewable Energy, Elsevier, vol. 220(C).
    16. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
    17. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    18. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    19. Wu, Horng-Wen & Ho, Tzu-Yi & Han, Yueh-Jung, 2021. "Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells," Energy, Elsevier, vol. 216(C).
    20. Li, Hong-Wei & Liu, Jun-Nan & Yang, Yue & Fan, Wenxuan & Lu, Guo-Long, 2022. "Research on mass transport characteristics and net power performance under different flow channel streamlined imitated water-drop block arrangements for proton exchange membrane fuel cell," Energy, Elsevier, vol. 251(C).
    21. Mei, Bing & Barnoon, Pouya & Toghraie, Davood & Su, Chia-Hung & Nguyen, Hoang Chinh & Khan, Afrasyab, 2022. "Energy, exergy, environmental and economic analyzes (4E) and multi-objective optimization of a PEM fuel cell equipped with coolant channels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    2. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    3. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    4. Li, Zhengyan & Xian, Lei & Wang, Qiuyu & Wang, Junwei & Chen, Lei & Tao, Wen-Quan, 2024. "Performance enhancement of proton exchange membrane fuel cell by utilizing a blocked regulated tri-serpentine flow field: Comprehensive optimization with variable block heights and multiple auxiliary ," Applied Energy, Elsevier, vol. 372(C).
    5. Pan, Mingzhang & Li, Chao & Liao, Jinyang & Lei, Han & Pan, Chengjie & Meng, Xianpan & Huang, Haozhong, 2020. "Design and modeling of PEM fuel cell based on different flow fields," Energy, Elsevier, vol. 207(C).
    6. Hwang, Jenn-Jiang & Dlamini, Mangaliso Menzi & Weng, Fang-Bor & Chang, Tseng & Lin, Chih-Hong & Weng, Shih-Cheng, 2022. "Simulation of fine mesh implementation on the cathode for proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 244(PA).
    7. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Zhang, Shuanyang & Liu, Shun & Xu, Hongtao & Liu, Gaojie & Wang, Ke, 2022. "Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design," Energy, Elsevier, vol. 239(PB).
    9. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    10. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    11. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    12. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    13. Liu, Lina & Guo, Lingyi & Zhang, Ruiyuan & Chen, Li & Tao, Wen-Quan, 2021. "Numerically investigating two-phase reactive transport in multiple gas channels of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 302(C).
    14. Ji-Seong Kim & Keon-Soo Kim & Do-Young Kim & Min Heo & Kap-Seung Choi, 2022. "Effect of Rotational Control for Accelerating Water Discharge on the Performance of a Circular Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 15(8), pages 1-14, April.
    15. Chen, Ke & Chen, Wenshang & Zou, Guofu & Chen, Ben, 2024. "Intelligent optimization: Novel application of PCC, MCDM, and ANN + NSGA-III in integrated optimization of the flow field and porous layer structures for unitized regenerative fuel cell," Applied Energy, Elsevier, vol. 374(C).
    16. Huang, Haozhong & Liu, Mingxin & Li, Xuan & Guo, Xiaoyu & Wang, Tongying & Li, Songwei & Lei, Han, 2022. "Numerical simulation and visualization study of a new tapered-slope serpentine flow field in proton exchange membrane fuel cell," Energy, Elsevier, vol. 246(C).
    17. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    18. Li, Jinguang & Ke, Yuzhi & Yuan, Wei & Bai, Yafeng & Zhang, Baotong & Liu, Zi'ang & Lin, Zhenhe & Liu, Qingsen & Tang, Yong, 2023. "Enhancement of two-phase flow and mass transport by a two-dimensional flow channel with variable cross-sections in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 219(P2).
    19. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    20. Iranzo, A. & Arredondo, C.H. & Kannan, A.M. & Rosa, F., 2020. "Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220310847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.