IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v238y2019icp1048-1059.html
   My bibliography  Save this article

The impact of ionomer type on the morphological and microstructural degradations of proton exchange membrane fuel cell electrodes under freeze-thaw cycles

Author

Listed:
  • Ozden, Adnan
  • Shahgaldi, Samaneh
  • Li, Xianguo
  • Hamdullahpur, Feridun

Abstract

Recent studies indicate that short-side-chain (SSC) ionomers in the proton exchange membrane (PEM) fuel cell electrodes substantially improve the cell performance and durability. In this study, SSC ionomer-based electrodes of different platinum (Pt) loadings are investigated when subjected to freeze-thaw (F-T) cycles between 30 °C and −40 °C, and compared with the conventional long-side-chain (LSC) ionomer-based electrodes. It is shown that the degradation patterns are similar for a given type of electrode, but different for the two types of electrodes, and independent of Pt loading. For the SSC ionomer-based electrodes, degradation occurs initially through ionomer swelling and pore expansion, and proceeds through detachment of large-scale catalyst layer (CL) flakes together with microporous layer (MPL) sheets, and ends with highly corroded morphology and microstructure. In comparison, the LSC ionomer-based electrodes degrade due to ionomer swelling and pore expansion in the initial 15 cycles, and then pore expansion becomes the main mechanism controlling the degradations. The high Pt loading LSC ionomer-based electrode degrades through simple detachment of small-scale CL flakes without damaging the MPL substantially, whereas the low Pt loading one degrades through surface corrosion, along with severe MPL degradation. Independent of the ionomer type, the Pt loading does not impact the degradation mechanism, but it does certainly affect the morphology and microstructure achieved after the same cycling period.

Suggested Citation

  • Ozden, Adnan & Shahgaldi, Samaneh & Li, Xianguo & Hamdullahpur, Feridun, 2019. "The impact of ionomer type on the morphological and microstructural degradations of proton exchange membrane fuel cell electrodes under freeze-thaw cycles," Applied Energy, Elsevier, vol. 238(C), pages 1048-1059.
  • Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:1048-1059
    DOI: 10.1016/j.apenergy.2019.01.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "Impact of manufacturing processes on proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 225(C), pages 1022-1032.
    2. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    3. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    4. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    5. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    6. Chen, Huicui & Song, Zhen & Zhao, Xin & Zhang, Tong & Pei, Pucheng & Liang, Chen, 2018. "A review of durability test protocols of the proton exchange membrane fuel cells for vehicle," Applied Energy, Elsevier, vol. 224(C), pages 289-299.
    7. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    8. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability," Applied Energy, Elsevier, vol. 217(C), pages 295-302.
    9. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Zhu & Yanbo Yang & Tiancai Ma, 2022. "Evaluation the Resistance Growth of Aged Vehicular Proton Exchange Membrane Fuel Cell Stack by Distribution of Relaxation Times," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    2. Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Xiaokang Yang & Jiaqi Sun & Guang Jiang & Shucheng Sun & Zhigang Shao & Hongmei Yu & Fangwei Duan & Yingxuan Yang, 2021. "Experimental Study on Critical Membrane Water Content of Proton Exchange Membrane Fuel Cells for Cold Storage at −50 °C," Energies, MDPI, vol. 14(15), pages 1-17, July.
    4. Shahgaldi, Samaneh & Ozden, Adnan & Li, Xianguo & Hamdullahpur, Feridun, 2020. "A scaled-up proton exchange membrane fuel cell with enhanced performance and durability," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    2. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    3. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    4. Wu, Ziyao & Pei, Pucheng & Xu, Huachi & Jia, Xiaoning & Ren, Peng & Wang, Bozheng, 2019. "Study on the effect of membrane electrode assembly parameters on polymer electrolyte membrane fuel cell performance by galvanostatic charging method," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    7. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    8. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    9. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    10. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    11. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    12. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    13. Komini Babu, S. & Spernjak, D. & Dillet, J. & Lamibrac, A. & Maranzana, G. & Didierjean, S. & Lottin, O. & Borup, R.L. & Mukundan, R., 2019. "Spatially resolved degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation," Applied Energy, Elsevier, vol. 254(C).
    14. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    16. K/bidi, Fabrice & Damour, Cedric & Grondin, Dominique & Hilairet, Mickaël & Benne, Michel, 2022. "Multistage power and energy management strategy for hybrid microgrid with photovoltaic production and hydrogen storage," Applied Energy, Elsevier, vol. 323(C).
    17. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    18. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Zhang, Lu & Li, Yuehua & Song, Xin & Wang, Mingkai & Wang, He, 2022. "Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated PEM fuel cell cathode environment," Renewable Energy, Elsevier, vol. 194(C), pages 1277-1287.
    19. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:1048-1059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.