IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920302518.html
   My bibliography  Save this article

Green and efficient two-step degradation approach for converting Powder River Basin coal into fuels/chemicals and insights into their chemical compositions

Author

Listed:
  • Liu, Fang-Jing
  • Liu, Guang-Hui
  • Gasem, Khaled A.M.
  • Xu, Bang
  • Goroncy, Alexander
  • Tang, Ming-Chen
  • Huang, Zai-Xing
  • Fan, Maohong
  • Wei, Xian-Yong

Abstract

A green and efficient two-step degradation approach, including supercritical CO2/ethanol degradation and oxidation in aqueous hydrogen peroxide solution, was reported to convert Powder River Basin coal into fuels/chemicals. In total, 43.5 wt% liquid tar and 23.3 wt% oxidation products were obtained from the two-step degradation. The liquid tar was facilely separated into light oil and asphaltene, with yields of 27.3 wt% and 16.5 wt%, respectively. The first-step degradation has high energy recovery (50%) and low energy consumption ratio (minimum 0.17), indicating an energetic net energy gain. The light oil is a promising feedstock as clean liquid fuels due to its high H/C ratio (1.58) and heating value (34.56 MJ/kg). The asphaltene with lower H/C and O/C ratios but higher aromaticity (0.83) could be a good precursor for carbon materials. The light oil can be upgraded into clean liquid fuels by hydrodeoxygenation or used as feedstock for producing oxygenated chemicals because it is rich in oxygenated components. Phenols and aliphatic esters account for 74.2% of the volatile components in the light oil. High resolution mass spectrometric analysis revealed that the O1–O4 class species are dominant components with relative abundance of 71% in the light oil. Valuable carboxylic acids with total yields of 19.7 wt%, especially alkanedioic and alkanetricarboxylic acids, were produced from oxidation of the scCO2/ethanol degradation residue, which is a promising second-step degradation to utilize the residue. This study provides an efficient coal conversion processes for producing fuels/chemicals and reducing energy consumption and environmental impact.

Suggested Citation

  • Liu, Fang-Jing & Liu, Guang-Hui & Gasem, Khaled A.M. & Xu, Bang & Goroncy, Alexander & Tang, Ming-Chen & Huang, Zai-Xing & Fan, Maohong & Wei, Xian-Yong, 2020. "Green and efficient two-step degradation approach for converting Powder River Basin coal into fuels/chemicals and insights into their chemical compositions," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302518
    DOI: 10.1016/j.apenergy.2020.114739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    2. Liu, Fang-Jing & Gasem, Khaled A.M. & Tang, Mingchen & Goroncy, Alexander & He, Xin & Huang, Zaixing & Sun, Kaidi & Fan, Maohong, 2018. "Mild degradation of Powder River Basin sub-bituminous coal in environmentally benign supercritical CO2-ethanol system to produce valuable high-yield liquid tar," Applied Energy, Elsevier, vol. 225(C), pages 460-470.
    3. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    4. Rudyk, Svetlana & Spirov, Pavel, 2014. "Upgrading and extraction of bitumen from Nigerian tar sand by supercritical carbon dioxide," Applied Energy, Elsevier, vol. 113(C), pages 1397-1404.
    5. Zhang, Qing & Xu, Ying & Li, Yuping & Wang, Tiejun & Zhang, Qi & Ma, Longlong & He, Minghong & Li, Kai, 2015. "Investigation on the esterification by using supercritical ethanol for bio-oil upgrading," Applied Energy, Elsevier, vol. 160(C), pages 633-640.
    6. Chen, Bo & Wei, Xian-Yong & Zong, Zhi-Min & Yang, Zhu-Sheng & Qing, Yu & Liu, Chang, 2011. "Difference in chemical composition of supercritical methanolysis products between two lignites," Applied Energy, Elsevier, vol. 88(12), pages 4570-4576.
    7. Walter Leitner, 2000. "Designed to dissolve," Nature, Nature, vol. 405(6783), pages 129-130, May.
    8. Liu, Fang-Jing & Wei, Xian-Yong & Fan, Maohong & Zong, Zhi-Min, 2016. "Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review," Applied Energy, Elsevier, vol. 170(C), pages 415-436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Fang-Jing & Gasem, Khaled A.M. & Tang, Mingchen & Xu, Bang & Huang, Zaixing & Zhang, Riguang & Fan, Maohong, 2020. "Enhanced liquid tar production as fuels/chemicals from Powder River Basin coal through CaO catalyzed stepwise degradation in eco-friendly supercritical CO2/ethanol," Energy, Elsevier, vol. 191(C).
    2. Liu, Fang-Jing & Gasem, Khaled A.M. & Tang, Mingchen & Goroncy, Alexander & He, Xin & Huang, Zaixing & Sun, Kaidi & Fan, Maohong, 2018. "Mild degradation of Powder River Basin sub-bituminous coal in environmentally benign supercritical CO2-ethanol system to produce valuable high-yield liquid tar," Applied Energy, Elsevier, vol. 225(C), pages 460-470.
    3. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    4. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    5. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    6. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    7. Siddiqui, M.T.H. & Baloch, Humair Ahmed & Nizamuddin, Sabzoi & Mubarak, N.M. & Mazari, Shaukat Ali & Griffin, G.J. & Srinivasan, Madapusi, 2021. "Dual-application of novel magnetic carbon nanocomposites as catalytic liquefaction for bio-oil synthesis and multi-heavy metal adsorption," Renewable Energy, Elsevier, vol. 172(C), pages 1103-1119.
    8. Muhammad Usman & Shuo Cheng & Sasipa Boonyubol & Jeffrey S. Cross, 2023. "Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(15), pages 1-45, August.
    9. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    10. Zhang, Xin & Wu, Ke & Yuan, Qiaoxia, 2020. "Comparative study of microwave and conventional hydrothermal treatment of chicken carcasses: Bio-oil yields and properties," Energy, Elsevier, vol. 200(C).
    11. Moinuddin Ghauri & Khurram Shahzad & M. Shahzad Khurram & Mujtaba Hussain Jaffery & Najaf Ali & Waqar Ali Khan & Keith R. Cliffe, 2017. "Development of a Temperature Programmed Identification Technique to Characterize the Organic Sulphur Functional Groups in Coal," Energies, MDPI, vol. 10(6), pages 1-17, June.
    12. Khalekuzzaman, Md & Jahan, Nusrat & Bin Kabir, Sadib & Hasan, Mehedi, 2024. "An integrated energy recovery approach of biohythane-biocrude production from microalgae-sludge through co-digestion and co-liquefaction," Renewable Energy, Elsevier, vol. 225(C).
    13. Sapkota, Krishna & Oni, Abayomi Olufemi & Kumar, Amit & Linwei, Ma, 2018. "The development of a techno-economic model for the extraction, transportation, upgrading, and shipping of Canadian oil sands products to the Asia-Pacific region," Applied Energy, Elsevier, vol. 223(C), pages 273-292.
    14. Shafaghat, Hoda & Kim, Ji Man & Lee, In-Gu & Jae, Jungho & Jung, Sang-Chul & Park, Young-Kwon, 2019. "Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts," Renewable Energy, Elsevier, vol. 144(C), pages 159-166.
    15. Ayaz Ali Shah & Saqib Sohail Toor & Asbjørn Haaning Nielsen & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2021. "Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon," Energies, MDPI, vol. 14(12), pages 1-20, June.
    16. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    17. Hui Fan & Menglin Ren & Caiyun Feng & Yue Jiao & Yonghui Bai & Qingxiang Ma, 2022. "Pyrolysis Characteristics of Hailar Lignite in the Presence of Polyvinyl Chloride: Products Distribution and Chlorine Migration," Energies, MDPI, vol. 15(9), pages 1-12, May.
    18. Guanyu Zhang & Kejie Wang & Quan Liu & Lujia Han & Xuesong Zhang, 2022. "A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    19. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    20. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.