IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p782-d100643.html
   My bibliography  Save this article

Development of a Temperature Programmed Identification Technique to Characterize the Organic Sulphur Functional Groups in Coal

Author

Listed:
  • Moinuddin Ghauri

    (Department of Chemical Engineering, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Khurram Shahzad

    (Centre for Coal Technology, University of the Punjab, Lahore 54000, Pakistan)

  • M. Shahzad Khurram

    (Department of Chemical Engineering, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Mujtaba Hussain Jaffery

    (Department of Electrical Engineering, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Najaf Ali

    (Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Faisalabad 38000, Pakistan)

  • Waqar Ali Khan

    (Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Faisalabad 38000, Pakistan)

  • Keith R. Cliffe

    (Department of Mechanical and Process Engineering, University of Sheffield, Sheffield S10 2TN, UK)

Abstract

The Temperature Programmed Reduction (TPR) technique is employed for the characterisation of various organic sulphur functional groups in coal. The TPR technique is modified into the Temperature Programmed Identification technique to investigate whether this method can detect various functional groups corresponding to their reduction temperatures. Ollerton, Harworth, Silverdale, Prince of Wales coal and Mequinenza lignite were chosen for this study. High pressure oxydesulphurisation of the coal samples was also done. The characterization of various organic sulphur functional groups present in untreated and treated coal by the TPR method and later by the TPI method confirmed that these methods can identify the organic sulphur groups in coal and that the results based on total sulphur are comparable with those provided by standard analytical techniques. The analysis of the untreated and treated coal samples showed that the structural changes in the organic sulphur matrix due to a reaction can be determined.

Suggested Citation

  • Moinuddin Ghauri & Khurram Shahzad & M. Shahzad Khurram & Mujtaba Hussain Jaffery & Najaf Ali & Waqar Ali Khan & Keith R. Cliffe, 2017. "Development of a Temperature Programmed Identification Technique to Characterize the Organic Sulphur Functional Groups in Coal," Energies, MDPI, vol. 10(6), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:782-:d:100643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moinuddin Ghauri & Khurram Shahzad & Abrar Inayat & Zulfiqar Ali & Keith R. Cliffe, 2016. "High Pressure Oxydesulphurisation of Coal Using KMnO 4 —Effect of Coal Slurry Concentration, pH and Alkali," Energies, MDPI, vol. 9(4), pages 1-14, April.
    2. Liu, Fang-Jing & Wei, Xian-Yong & Fan, Maohong & Zong, Zhi-Min, 2016. "Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review," Applied Energy, Elsevier, vol. 170(C), pages 415-436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Fang-Jing & Gasem, Khaled A.M. & Tang, Mingchen & Goroncy, Alexander & He, Xin & Huang, Zaixing & Sun, Kaidi & Fan, Maohong, 2018. "Mild degradation of Powder River Basin sub-bituminous coal in environmentally benign supercritical CO2-ethanol system to produce valuable high-yield liquid tar," Applied Energy, Elsevier, vol. 225(C), pages 460-470.
    2. Cui, Tongmin & Fan, Wenke & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo & Wang, Fuchen, 2016. "Variation of the coal chemical structure and determination of the char molecular size at the early stage of rapid pyrolysis," Applied Energy, Elsevier, vol. 179(C), pages 650-659.
    3. Liu, Fang-Jing & Gasem, Khaled A.M. & Tang, Mingchen & Xu, Bang & Huang, Zaixing & Zhang, Riguang & Fan, Maohong, 2020. "Enhanced liquid tar production as fuels/chemicals from Powder River Basin coal through CaO catalyzed stepwise degradation in eco-friendly supercritical CO2/ethanol," Energy, Elsevier, vol. 191(C).
    4. Moinuddin Ghauri & Khurram Shahzad & Abrar Inayat & Zulfiqar Ali & Waqar Ali Khan & Javaid Akhtar & Keith R. Cliffe, 2016. "High Pressure Oxydesulphurisation of Coal—Effect of Oxidizing Agent, Solvent, Shear and Agitator Configuration," Energies, MDPI, vol. 9(7), pages 1-15, June.
    5. Laifu Zhao & Qian Du & Jianmin Gao & Shaohua Wu, 2019. "Contribution of Minerals in Different Occurrence Forms to PM 10 Emissions during the Combustion of Pulverized Zhundong Coal," Energies, MDPI, vol. 12(19), pages 1-14, September.
    6. Yugao Wang & Xiaochen Liu & Zhilei Wang & Chuan Dong & Jun Shen & Xing Fan, 2021. "Insight into Relationship between Thermal Dissolution of Low-Rank Coals and Their Subsequent Oxidative Depolymerization," Energies, MDPI, vol. 15(1), pages 1-10, December.
    7. Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
    8. Liu, Fang-Jing & Liu, Guang-Hui & Gasem, Khaled A.M. & Xu, Bang & Goroncy, Alexander & Tang, Ming-Chen & Huang, Zai-Xing & Fan, Maohong & Wei, Xian-Yong, 2020. "Green and efficient two-step degradation approach for converting Powder River Basin coal into fuels/chemicals and insights into their chemical compositions," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:782-:d:100643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.