IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v144y2019icp159-166.html
   My bibliography  Save this article

Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts

Author

Listed:
  • Shafaghat, Hoda
  • Kim, Ji Man
  • Lee, In-Gu
  • Jae, Jungho
  • Jung, Sang-Chul
  • Park, Young-Kwon

Abstract

Pyrolysis oil (bio-oil) consists of high water content and vast variety of oxygenates (acids, alcohols, aldehydes, esters, ketones, sugars and phenols), causing some undesirable properties that prevent the direct use of bio-oil as a transportation fuel. Bio-oil upgrading to decrease its oxygen content provides a sustainable fuel that can be considered a valuable substitution for depleting fossil fuels. Catalytic hydrodeoxygenation (HDO) is an efficient method for bio-oil upgrading. This paper presents the HDO of crude bio-oil in supercritical fluid (ethanol, methanol, and 2-propanol) using a batch high pressure reactor. Supercritical fluids have unique physicochemical properties of liquid-like density and gas-like high diffusivity and low viscosity. The upgrading efficiency was evaluated by measuring the elemental composition (CHNSO), water content, carbon residue, and high heating value (HHV) of the bio-oil upgraded over Ni/HBeta catalyst. Compared to ethanol and 2-propanol, supercritical methanol resulted in a higher decrease in the oxygen content of bio-oil. The activity of Ni/HBeta was examined by varying the Ni loading (5–20 wt%), initial hydrogen pressure (10–30 bar), and reaction time (2–6 h). Meanwhile, effects of support materials (HZSM-5, HBeta, HY, Al-SBA-15, and silylated HBeta) on the performance of nickel catalyst in bio-oil upgrading were investigated using supercritical methanol.

Suggested Citation

  • Shafaghat, Hoda & Kim, Ji Man & Lee, In-Gu & Jae, Jungho & Jung, Sang-Chul & Park, Young-Kwon, 2019. "Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts," Renewable Energy, Elsevier, vol. 144(C), pages 159-166.
  • Handle: RePEc:eee:renene:v:144:y:2019:i:c:p:159-166
    DOI: 10.1016/j.renene.2018.06.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qing & Xu, Ying & Li, Yuping & Wang, Tiejun & Zhang, Qi & Ma, Longlong & He, Minghong & Li, Kai, 2015. "Investigation on the esterification by using supercritical ethanol for bio-oil upgrading," Applied Energy, Elsevier, vol. 160(C), pages 633-640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan, M.M. & Rasul, M.G. & Ashwath, N. & Khan, M.M.K. & Jahirul, M.I., 2022. "Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil," Renewable Energy, Elsevier, vol. 194(C), pages 1098-1109.
    2. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    3. Omer, Ahmed & Kazmi, Wajahat Waheed & Rahimipetroudi, Iman & Syed, Muhammad Wasi & Rashid, Kashif & Yang, Je Bok & Lee, In Gu & Dong, Sang Keun, 2023. "Experimental and numerical study on the hexadecanoic acid upgrading kinetics under supercritical ethanol without the use of hydrogen," Renewable Energy, Elsevier, vol. 219(P2).
    4. Fang, Jun & Liu, Zhuangzhuang & Luan, Hui & Liu, Fen & Yuan, Xingzhong & Long, Shundong & Wang, Andong & Ma, Yong & Xiao, Zhihua, 2021. "Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions," Renewable Energy, Elsevier, vol. 167(C), pages 32-41.
    5. Qian, Lili & Wang, Shuzhong & Savage, Phillip E., 2020. "Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    2. Omer, Ahmed & Kazmi, Wajahat Waheed & Rahimipetroudi, Iman & Syed, Muhammad Wasi & Rashid, Kashif & Yang, Je Bok & Lee, In Gu & Dong, Sang Keun, 2023. "Experimental and numerical study on the hexadecanoic acid upgrading kinetics under supercritical ethanol without the use of hydrogen," Renewable Energy, Elsevier, vol. 219(P2).
    3. Liu, Fang-Jing & Gasem, Khaled A.M. & Tang, Mingchen & Xu, Bang & Huang, Zaixing & Zhang, Riguang & Fan, Maohong, 2020. "Enhanced liquid tar production as fuels/chemicals from Powder River Basin coal through CaO catalyzed stepwise degradation in eco-friendly supercritical CO2/ethanol," Energy, Elsevier, vol. 191(C).
    4. Prajitno, Hermawan & Insyani, Rizki & Park, Jongkeun & Ryu, Changkook & Kim, Jaehoon, 2016. "Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil," Applied Energy, Elsevier, vol. 172(C), pages 12-22.
    5. Remón, J. & Arcelus-Arrillaga, P. & García, L. & Arauzo, J., 2018. "Simultaneous production of gaseous and liquid biofuels from the synergetic co-valorisation of bio-oil and crude glycerol in supercritical water," Applied Energy, Elsevier, vol. 228(C), pages 2275-2287.
    6. Liu, Fang-Jing & Liu, Guang-Hui & Gasem, Khaled A.M. & Xu, Bang & Goroncy, Alexander & Tang, Ming-Chen & Huang, Zai-Xing & Fan, Maohong & Wei, Xian-Yong, 2020. "Green and efficient two-step degradation approach for converting Powder River Basin coal into fuels/chemicals and insights into their chemical compositions," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:144:y:2019:i:c:p:159-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.