IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v261y2020ics0306261919319828.html
   My bibliography  Save this article

Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China

Author

Listed:
  • Zheng, Shuguang
  • Huang, Guohe
  • Zhou, Xiong
  • Zhu, Xiaohang

Abstract

This study was to quantify the effects of climate change on total electricity consumption (TEC) and residential electricity consumption (REC) at a regional scale, with a case study in Guangzhou, China. The Mann-Kendall test was used to explore the tendency of climate change. The best subset regression analysis was undertaken to develop electricity consumption models, as represented by a number of socioeconomic and climatic variables. The levels of electricity consumption and their variabilities (percentage changes) in 2016 to 2035 (the 2030s), 2046 to 2065 (the 2050s), and 2076 to 2095 (the 2080s) were then calculated under 20 scenario combinations, which were driven by five Shared Socio-economic Pathways (SSPs) and four Representation Concentration Pathways (RCPs). The results revealed that Guangzhou had a significant warming tendency till the end of the 21st century, with an increasing rate of 0.15 – 0.47 °C/decade (1986–2099) under four RCPs. With such a warming trend, the increased demand for cooling would lead to the raised electricity consumption. Furthermore, total electricity consumption would be more sensitive to climatic warming than residential electricity consumption. With a raised temperature of 1 °C, total electricity consumption would increase by 2.7%, and the residential one would increase by 0.9%. In addition, the projected impacts of climate change on electricity consumption would depend on the emissions of greenhouse gases. In other words, electricity consumption would vary significantly under four RCPs, with the impacts being increased gradually from RCP2.6 to RCP8.5. In the 2080s, total electricity consumption would be 161 TWh under RCP2.6, while the residential one would be 44 TWh. In comparison, under RCP8.5, total electricity consumption would be 171 TWh, while the residential one would be 45 TWh. Under global warming, total electricity consumption would increase by 3.2%–10.4% by 2080s, compared with the baseline period from 1986 to 2005; for residential electricity consumption, the relevant increases would be 1.1%–3.5%.

Suggested Citation

  • Zheng, Shuguang & Huang, Guohe & Zhou, Xiong & Zhu, Xiaohang, 2020. "Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919319828
    DOI: 10.1016/j.apenergy.2019.114295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smyth, Russell, 2013. "Are fluctuations in energy variables permanent or transitory? A survey of the literature on the integration properties of energy consumption and production," Applied Energy, Elsevier, vol. 104(C), pages 371-378.
    2. Kaboli, S. Hr. Aghay & Fallahpour, A. & Selvaraj, J. & Rahim, N.A., 2017. "Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming," Energy, Elsevier, vol. 126(C), pages 144-164.
    3. Trotter, Ian M. & Bolkesjø, Torjus Folsland & Féres, José Gustavo & Hollanda, Lavinia, 2016. "Climate change and electricity demand in Brazil: A stochastic approach," Energy, Elsevier, vol. 102(C), pages 596-604.
    4. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    5. Jinyue Yan, 2018. "Negative-emissions hydrogen energy," Nature Climate Change, Nature, vol. 8(7), pages 560-561, July.
    6. Mourshed, Monjur, 2011. "The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh," Applied Energy, Elsevier, vol. 88(11), pages 3737-3746.
    7. Sailor, D.J & Pavlova, A.A, 2003. "Air conditioning market saturation and long-term response of residential cooling energy demand to climate change," Energy, Elsevier, vol. 28(9), pages 941-951.
    8. Sailor, David J, 2001. "Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities," Energy, Elsevier, vol. 26(7), pages 645-657.
    9. Mukhopadhyay, Sayanti & Nateghi, Roshanak, 2017. "Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States," Energy, Elsevier, vol. 128(C), pages 688-700.
    10. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    11. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
    12. Ahmed, T. & Muttaqi, K.M. & Agalgaonkar, A.P., 2012. "Climate change impacts on electricity demand in the State of New South Wales, Australia," Applied Energy, Elsevier, vol. 98(C), pages 376-383.
    13. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Scenario analysis of nonresidential natural gas consumption in Italy," Applied Energy, Elsevier, vol. 113(C), pages 392-403.
    14. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    15. Meng, Ming & Wang, Lixue & Shang, Wei, 2018. "Decomposition and forecasting analysis of China's household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models," Energy, Elsevier, vol. 165(PA), pages 143-152.
    16. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    17. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    18. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    19. Craig, Christopher A. & Feng, Song, 2017. "Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach," Applied Energy, Elsevier, vol. 185(P1), pages 779-790.
    20. Silvana Mima & Patrick Criqui, 2015. "The Costs of Climate Change for the European Energy System, an Assessment with the POLES Model," Post-Print hal-01149610, HAL.
    21. Dillon Alleyne, 2006. "Can Seasonal Unit Root Testing Improve the Forecasting Accuracy of Tourist Arrivals?," Tourism Economics, , vol. 12(1), pages 45-64, March.
    22. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
    23. Apadula, Francesco & Bassini, Alessandra & Elli, Alberto & Scapin, Simone, 2012. "Relationships between meteorological variables and monthly electricity demand," Applied Energy, Elsevier, vol. 98(C), pages 346-356.
    24. Fan, Jing-Li & Hu, Jia-Wei & Zhang, Xian, 2019. "Impacts of climate change on electricity demand in China: An empirical estimation based on panel data," Energy, Elsevier, vol. 170(C), pages 880-888.
    25. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    26. Tsang, Eric W. K., 2014. "Old and New," Management and Organization Review, Cambridge University Press, vol. 10(03), pages 390-390, November.
    27. Ruth, Matthias & Lin, Ai-Chen, 2006. "Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA," Energy Policy, Elsevier, vol. 34(17), pages 2820-2833, November.
    28. Moral-Carcedo, Julián & Pérez-García, Julián, 2015. "Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain," Applied Energy, Elsevier, vol. 142(C), pages 407-425.
    29. Detlef Vuuren & Timothy Carter, 2014. "Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old," Climatic Change, Springer, vol. 122(3), pages 415-429, February.
    30. Feng, Jing-Chun & Yan, Jinyue & Yu, Zhi & Zeng, Xuelan & Xu, Weijia, 2018. "Case study of an industrial park toward zero carbon emission," Applied Energy, Elsevier, vol. 209(C), pages 65-78.
    31. Niklas Höhne & Takeshi Kuramochi & Carsten Warnecke & Frauke Röser & Hanna Fekete & Markus Hagemann & Thomas Day & Ritika Tewari & Marie Kurdziel & Sebastian Sterl & Sofia Gonzales, 2017. "The Paris Agreement: resolving the inconsistency between global goals and national contributions," Climate Policy, Taylor & Francis Journals, vol. 17(1), pages 16-32, January.
    32. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    33. Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.
    34. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiangyi Li & Lan Yang & Shuang Huang & Yangqing Liu & Chenyang Guo, 2023. "The Effects of Urban Sprawl on Electricity Consumption: Empirical Evidence from 283 Prefecture-Level Cities in China," Land, MDPI, vol. 12(8), pages 1-27, August.
    2. Tian, Chuyin & Huang, Guohe & Piwowar, Joseph M. & Yeh, Shin-Cheng & Lu, Chen & Duan, Ruixin & Ren, Jiayan, 2022. "Stochastic RCM-driven cooling and heating energy demand analysis for residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Tian, Chuyin & Huang, Guohe & Lu, Chen & Zhou, Xiong & Duan, Ruixin, 2021. "Development of enthalpy-based climate indicators for characterizing building cooling and heating energy demand under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Chen, Haitao & Zhang, Bin & Liu, Hua & Cao, Jiguo, 2024. "The inequality in household electricity consumption due to temperature change: Data driven analysis with a function-on-function linear model," Energy, Elsevier, vol. 288(C).
    5. Zhang, Yuejuan & Li, Xian-Xiang & Xin, Rui & Chew, Lup Wai & Liu, Chun-Ho, 2024. "Applicability of data-driven methods in modeling electricity demand-climate nexus: A tale of Singapore and Hong Kong," Energy, Elsevier, vol. 300(C).
    6. Tian, Xiaoyu & Zhang, Hanwen & Liu, Lin & Huang, Jiahao & Liu, Liru & Liu, Jing, 2024. "Establishment of LCZ-based urban building energy consumption dataset in hot and humid subtropical regions through a bottom-up method," Applied Energy, Elsevier, vol. 368(C).
    7. Zhanyang Xu & Jian Xu & Chengxi Xu & Hong Zhao & Hongyan Shi & Zhe Wang, 2024. "Analysis of the Impact of Policies and Meteorological Factors on Industrial Electricity Demand in Jiangsu Province," Sustainability, MDPI, vol. 16(22), pages 1-23, November.
    8. Ma, Y. & Li, Y.P. & Mei, H. & Nie, S. & Huang, G.H. & Li, Y.F. & Suo, C., 2024. "Potential way to plan China's power system (2021–2050) for climate change mitigation," Renewable Energy, Elsevier, vol. 225(C).
    9. W.J. Wouter Botzen & Tim Nees & Francisco Estrada, 2020. "Temperature Effects on Electricity and Gas Consumption: Empirical Evidence from Mexico and Projections under Future Climate Conditions," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    10. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    11. Agata Balińska & Ewa Jaska & Agnieszka Werenowska, 2021. "The Role of Eco-Apps in Encouraging Pro-Environmental Behavior of Young People Studying in Poland," Energies, MDPI, vol. 14(16), pages 1-16, August.
    12. Yabin Da & Bin Zeng & Jing-Li Fan & Jiawei Hu & Lanlan Li, 2023. "Heterogeneous responses to climate: evidence from residential electricity consumption," Climatic Change, Springer, vol. 176(8), pages 1-19, August.
    13. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    14. Cuihui Xia & Tandong Yao & Weicai Wang & Wentao Hu, 2022. "Effect of Climate on Residential Electricity Consumption: A Data-Driven Approach," Energies, MDPI, vol. 15(9), pages 1-20, May.
    15. Yaqing Sheng & Jinpeng Liu & Delin Wei & Xiaohua Song, 2021. "Heterogeneous Study of Multiple Disturbance Factors Outside Residential Electricity Consumption: A Case Study of Beijing," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    16. Huang, Shanshan & Suo, Cai & Guo, Junhong & Lv, Jing & Jing, Rui & Yu, Lei & Fan, Yurui & Ding, Yanming, 2023. "Balancing the water-energy dilemma in nexus system planning with bi-level and multi-uncertainty," Energy, Elsevier, vol. 278(C).
    17. Chen, Haitao & Zhang, Bin & Wang, Zhaohua, 2022. "Hidden inequality in household electricity consumption: Measurement and determinants based on large-scale smart meter data," China Economic Review, Elsevier, vol. 71(C).
    18. Jinpeng Liu & Hao Yang & Delin Wei & Xiaohua Song, 2021. "Time Distribution Simulation of Household Power Load Based on Travel Chains and Monte Carlo–A Study of Beijing in Summer," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    19. Joyce Nyuma Chivunga & Zhengyu Lin & Richard Blanchard, 2023. "Power Systems’ Resilience: A Comprehensive Literature Review," Energies, MDPI, vol. 16(21), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    2. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    3. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    4. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
    5. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    6. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    7. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    8. Hu, Wenxuan & Scholz, Yvonne & Yeligeti, Madhura & Deng, Ying & Jochem, Patrick, 2024. "Future electricity demand for Europe: Unraveling the dynamics of the Temperature Response Function," Applied Energy, Elsevier, vol. 368(C).
    9. Tian, Chuyin & Huang, Guohe & Piwowar, Joseph M. & Yeh, Shin-Cheng & Lu, Chen & Duan, Ruixin & Ren, Jiayan, 2022. "Stochastic RCM-driven cooling and heating energy demand analysis for residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    11. Fazeli, Reza & Davidsdottir, Brynhildur & Hallgrimsson, Jonas Hlynur, 2016. "Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1210-1226.
    12. Kamal Chapagain & Somsak Kittipiyakul & Pisut Kulthanavit, 2020. "Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand," Energies, MDPI, vol. 13(10), pages 1-29, May.
    13. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    14. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    15. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    16. Spalding-Fecher, Randall. & Senatla, Mamahloko & Yamba, Francis & Lukwesa, Biness & Himunzowa, Grayson & Heaps, Charles & Chapman, Arthur & Mahumane, Gilberto & Tembo, Bernard & Nyambe, Imasiku, 2017. "Electricity supply and demand scenarios for the Southern African power pool," Energy Policy, Elsevier, vol. 101(C), pages 403-414.
    17. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    18. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    19. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    20. Fan, Jing-Li & Hu, Jia-Wei & Zhang, Xian, 2019. "Impacts of climate change on electricity demand in China: An empirical estimation based on panel data," Energy, Elsevier, vol. 170(C), pages 880-888.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919319828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.