Applicability of data-driven methods in modeling electricity demand-climate nexus: A tale of Singapore and Hong Kong
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131525
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
- Che, JinXing & Wang, JianZhou, 2014. "Short-term load forecasting using a kernel-based support vector regression combination model," Applied Energy, Elsevier, vol. 132(C), pages 602-609.
- Sailor, David J, 2001. "Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities," Energy, Elsevier, vol. 26(7), pages 645-657.
- Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
- Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
- Monika Zielińska-Sitkiewicz & Mariola Chrzanowska & Konrad Furmańczyk & Kacper Paczutkowski, 2021. "Analysis of Electricity Consumption in Poland Using Prediction Models and Neural Networks," Energies, MDPI, vol. 14(20), pages 1-21, October.
- Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
- Bas J. van Ruijven & Enrica De Cian & Ian Sue Wing, 2019. "Amplification of future energy demand growth due to climate change," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
- Hyojoo Son & Changwan Kim, 2020. "A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
- Zheng, Shuguang & Huang, Guohe & Zhou, Xiong & Zhu, Xiaohang, 2020. "Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 261(C).
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Camilo Mora & Bénédicte Dousset & Iain R. Caldwell & Farrah E. Powell & Rollan C. Geronimo & Coral R. Bielecki & Chelsie W. W. Counsell & Bonnie S. Dietrich & Emily T. Johnston & Leo V. Louis & Matthe, 2017. "Global risk of deadly heat," Nature Climate Change, Nature, vol. 7(7), pages 501-506, July.
- Debora Maia-Silva & Rohini Kumar & Roshanak Nateghi, 2020. "The critical role of humidity in modeling summer electricity demand across the United States," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
- Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
- Tian, Chuyin & Huang, Guohe & Piwowar, Joseph M. & Yeh, Shin-Cheng & Lu, Chen & Duan, Ruixin & Ren, Jiayan, 2022. "Stochastic RCM-driven cooling and heating energy demand analysis for residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Pezalla, Simon & Obringer, Renee, 2023. "Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
- Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
- Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
- Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
- Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
- Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
- Joanna Henzel & Łukasz Wróbel & Marcin Fice & Marek Sikora, 2022. "Energy Consumption Forecasting for the Digital-Twin Model of the Building," Energies, MDPI, vol. 15(12), pages 1-21, June.
- Eshraghi, Hadi & Rodrigo de Queiroz, Anderson & Sankarasubramanian, A. & DeCarolis, Joseph F., 2021. "Quantification of climate-induced interannual variability in residential U.S. electricity demand," Energy, Elsevier, vol. 236(C).
- Shengwen Zhou & Shunsheng Guo & Baigang Du & Shuo Huang & Jun Guo, 2022. "A Hybrid Framework for Multivariate Time Series Forecasting of Daily Urban Water Demand Using Attention-Based Convolutional Neural Network and Long Short-Term Memory Network," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
- Yaqing Sheng & Jinpeng Liu & Delin Wei & Xiaohua Song, 2021. "Heterogeneous Study of Multiple Disturbance Factors Outside Residential Electricity Consumption: A Case Study of Beijing," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
- Zheng, Shuguang & Huang, Guohe & Zhou, Xiong & Zhu, Xiaohang, 2020. "Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 261(C).
- Yan Liu & Ting Zhang & Aiqing Kang & Jianzhu Li & Xiaohui Lei, 2021. "Research on Runoff Simulations Using Deep-Learning Methods," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
- Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
- repec:hal:journl:hal-04670841 is not listed on IDEAS
- Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
- Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
- Claudio Morana & Giacomo Sbrana, 2017.
"Temperature Anomalies, Radiative Forcing and ENSO,"
Working Papers
2017.09, Fondazione Eni Enrico Mattei.
- Morana, Claudio & Sbrana, Giacomo, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," MITP: Mitigation, Innovation and Transformation Pathways 253732, Fondazione Eni Enrico Mattei (FEEM).
- Claudio, Morana & Giacomo, Sbrana, 2017. "Temperature anomalies, radiative forcing and ENSO," Working Papers 361, University of Milano-Bicocca, Department of Economics, revised 10 Feb 2017.
- Claudio Morana & Giacomo Sbrana, 2017. "Temperature anomalies, radiative forcing and ENSO," Working Paper series 17-06, Rimini Centre for Economic Analysis.
- Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
More about this item
Keywords
Residential electricity consumption; Demand prediction; Climatic factors; Multiple linear regression; Machine learning; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224012982. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.