IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2504-d243925.html
   My bibliography  Save this article

Application of the Thermodynamic Cycle to Assess the Energy Efficiency of Amine-Based Absorption of Carbon Capture

Author

Listed:
  • Yaofeng Xu

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin 300350, China
    International Cooperation Research Centre of Carbon Capture in Ultra-Low Energy-Consumption, Tianjin 300350, China)

  • Shuai Deng

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin 300350, China
    International Cooperation Research Centre of Carbon Capture in Ultra-Low Energy-Consumption, Tianjin 300350, China)

  • Li Zhao

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin 300350, China)

  • Xiangzhou Yuan

    (College of Engineering Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea)

  • Jianxin Fu

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin 300350, China
    International Cooperation Research Centre of Carbon Capture in Ultra-Low Energy-Consumption, Tianjin 300350, China)

  • Shuangjun Li

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin 300350, China
    International Cooperation Research Centre of Carbon Capture in Ultra-Low Energy-Consumption, Tianjin 300350, China)

  • Yawen Liang

    (Tianjin Newcen Technical Co., Ltd., Tianjin 300384, China)

  • Junyao Wang

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin 300350, China
    International Cooperation Research Centre of Carbon Capture in Ultra-Low Energy-Consumption, Tianjin 300350, China)

  • Jun Zhao

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin 300350, China)

Abstract

The thermodynamic cycle, as a significant tool derived from equilibrium, could provide a reasonable and rapid energy profile of complicated energy systems. Such a function could strongly promote an in-depth and direct understanding of the energy conversion mechanism of cutting-edge industrial systems, e.g., carbon capture system (CCS) However, such applications of thermodynamics theory have not been widely accepted in the carbon capture sector, which may be one of the reasons why intensive energy consumption still obstructs large-scale commercialization of CCS. In this paper, a kind of thermodynamic cycle was developed as a tool to estimate the lowest regeneration heat ( Q re ) of a benchmark solvent (MEA) under typical conditions. Moreover, COP CO 2 , a new assessment indicator, was proposed firstly for energy-efficiency performance analysis of such a kind of CCS system. In addition to regeneration heat and second-law efficiency ( η 2nd ), the developed COP CO 2 was also integrated into the existing performance analysis framework, to assess the energy efficiency of an amine-based absorption system. Through variable parameter analysis, the higher CO 2 concentration of the flue gas, the higher COP CO 2 , up to 2.80 in 16 vt% and the Q re was 2.82 GJ/t, when R des = 1 and Δ T heat-ex = 10 K. The η 2nd was no more than 30% and decreased with the rise of the desorption temperature, which indicates the great potential of improvements of the energy efficiency.

Suggested Citation

  • Yaofeng Xu & Shuai Deng & Li Zhao & Xiangzhou Yuan & Jianxin Fu & Shuangjun Li & Yawen Liang & Junyao Wang & Jun Zhao, 2019. "Application of the Thermodynamic Cycle to Assess the Energy Efficiency of Amine-Based Absorption of Carbon Capture," Energies, MDPI, vol. 12(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2504-:d:243925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
    2. Shen, Yao & Jiang, Chenkai & Zhang, Shihan & Chen, Jun & Wang, Lidong & Chen, Jianmeng, 2018. "Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship," Applied Energy, Elsevier, vol. 230(C), pages 726-733.
    3. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    4. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    5. Gao, Jubao & Cao, Lingdi & Dong, Haifeng & Zhang, Xiangping & Zhang, Suojiang, 2015. "Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture: Role of imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 154(C), pages 771-780.
    6. Akachuku, Ananda & Osei, Priscilla Anima & Decardi-Nelson, Benjamin & Srisang, Wayuta & Pouryousefi, Fatima & Ibrahim, Hussameldin & Idem, Raphael, 2019. "Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine – Methyl-diethanolamine (MEA-MDEA) solutions," Energy, Elsevier, vol. 179(C), pages 475-489.
    7. Wang, Tao & Yu, Wei & Le Moullec, Yann & Liu, Fei & Xiong, Yili & He, Hui & Lu, Jiahui & Hsu, Emily & Fang, Mengxiang & Luo, Zhongyang, 2017. "Solvent regeneration by novel direct non-aqueous gas stripping process for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 205(C), pages 23-32.
    8. Wang, Junyao & Sun, Taiwei & Zhao, Jun & Deng, Shuai & Li, Kaixiang & Xu, Yaofeng & Fu, Jianxin, 2019. "Thermodynamic considerations on MEA absorption: Whether thermodynamic cycle could be used as a tool for energy efficiency analysis," Energy, Elsevier, vol. 168(C), pages 380-392.
    9. Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.
    10. Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
    2. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    3. Guo, Juncheng & Tan, Chaohuan & Li, Zhexu & Chen, Bo & Yang, Hanxin & Luo, Rongxiang & Gonzalez-Ayala, Julian & Hernández, A. Calvo, 2024. "New insights into energy conversion mechanism, optimal absorbent selection criteria, and operation strategies of absorption carbon capture systems," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Rujie & Jiang, Lei & Li, Qiangwei & Gao, Ge & Zhang, Shihan & Wang, Lidong, 2020. "Energy-saving CO2 capture using sulfolane-regulated biphasic solvent," Energy, Elsevier, vol. 211(C).
    2. Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
    3. Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
    4. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    5. Bihong, Lv & Kexuan, Yang & Xiaobin, Zhou & Zuoming, Zhou & Guohua, Jing, 2020. "2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture," Applied Energy, Elsevier, vol. 264(C).
    6. Li, Qiangwei & Huang, Xin & Li, Nuo & Qi, Tieyue & Wang, Rujie & Wang, Lidong & An, Shanlong, 2024. "Energy-efficient biphasic solvents for industrial CO2 capture: Absorption mechanism and stability characteristics," Energy, Elsevier, vol. 293(C).
    7. Guo, Juncheng & Tan, Chaohuan & Li, Zhexu & Chen, Bo & Yang, Hanxin & Luo, Rongxiang & Gonzalez-Ayala, Julian & Hernández, A. Calvo, 2024. "New insights into energy conversion mechanism, optimal absorbent selection criteria, and operation strategies of absorption carbon capture systems," Energy, Elsevier, vol. 304(C).
    8. Zhou, Xiaobin & Liu, Chao & Zhang, Jie & Fan, Yinming & Zhu, Yinian & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Hongxiang & Zhu, Zongqiang, 2023. "Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator," Energy, Elsevier, vol. 270(C).
    9. Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
    10. Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
    11. Shen, Yao & Chen, Han & Wang, Junliang & Zhang, Shihan & Jiang, Chenkai & Ye, Jiexu & Wang, Lidong & Chen, Jianmeng, 2020. "Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption," Applied Energy, Elsevier, vol. 260(C).
    12. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
    13. Meng, Fanli & Fu, Kun & Wang, Xueli & Wang, Yixiao & Wang, Lemeng & Fu, Dong, 2024. "Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas," Energy, Elsevier, vol. 286(C).
    14. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    15. Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
    16. Hu, Hangtian & Fang, Mengxiang & Liu, Fei & Wang, Tao & Xia, Zhixiang & Zhang, Wei & Ge, Chunliang & Yuan, Jingjuan, 2022. "Novel alkanolamine-based biphasic solvent for CO2 capture with low energy consumption and phase change mechanism analysis," Applied Energy, Elsevier, vol. 324(C).
    17. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    18. Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
    19. Zhou, Xiaobin & Jing, Guohua & Lv, Bihong & Liu, Fan & Zhou, Zuoming, 2019. "Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol," Applied Energy, Elsevier, vol. 235(C), pages 379-390.
    20. Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2504-:d:243925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.