IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919314084.html
   My bibliography  Save this article

A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission

Author

Listed:
  • Gentillon, Philippe
  • Singh, Siddharth
  • Lakshman, Suhas
  • Zhang, Zhaolun
  • Paduthol, Appu
  • Ekins-Daukes, N.J.
  • Chan, Qing N.
  • Taylor, Robert A.

Abstract

The high temperatures of combustion systems make them suitable for coupling with thermophotovoltaic systems. In practice, it is quite challenging to reduce heat losses and the spectral mismatch between the emission of the combustion source and the spectral response of photovoltaic (PV) cells. In an effort to pull these disparate energy-focussed research fields together, this paper explores the use of a low-cost erbia (Er2O3) coating on a novel porous media combustion-based thermophotovoltaic (PMC-TPV) reactor for continuous combined heat and power generation. In this work, three different configurations were analysed, including a non-coated porous foam, a coated porous foam, and a coated quartz container. As such, this study provides the first in-depth analysis and characterisation of all salient components of a PMC-TPV system. It includes a detailed characterisation of a 24-cell gallium antimonide (GaSb) array, which was attached to a heat sink and used to harvest the radiant emission from a hot (>1200 °C), yttria-stabilised zirconia/alumina composite (YZA) ceramic foam. Since the ceramic foam does not have an ideal emissivity curve for these cells, the ability of the erbia coating to control the spectral emission was measured. The results show that by applying the erbia coating to the outer surface of the YZA foam (e.g. using a simple 2-step process of dip coating followed by curing/calcination), it is possible to increase performance, achieving a maximum in-band emission fraction of 25.4% at a firing rate of 1300 kW/m2 (i.e. around 10% of increase than that for non-coated configuration), which provides a temperature of 1285 °C. Additionally, a maximum power output of 1 W was achieved by using erbia coating on YZA foam. For the third configuration, the use of the erbia coating on the quartz tube (instead of the YZA foam) leads to an increase in the maximum core temperature of the reactor up to 1443 °C; however, this also leads to a decrease in electrical performance due to a lower in-band fraction. These findings show that applying an erbia coating on an industrial radiant emitter could enable a combined heat and power processes to gain around 30% increase of electrical output. Finally, since the PV fill factor was lower than expected, and electroluminescence measurements indicated cell damage, these findings also reveal the importance of continuously monitoring PV parameters in PMC-TPV systems.

Suggested Citation

  • Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314084
    DOI: 10.1016/j.apenergy.2019.113721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919314084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    2. Ye, Jingjing & Medwell, Paul R. & Varea, Emilien & Kruse, Stephan & Dally, Bassam B. & Pitsch, Heinz G., 2015. "An experimental study on MILD combustion of prevaporised liquid fuels," Applied Energy, Elsevier, vol. 151(C), pages 93-101.
    3. Ferrari, Claudio & Melino, Francesco & Pinelli, Michele & Spina, Pier Ruggero, 2014. "Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences," Applied Energy, Elsevier, vol. 113(C), pages 1717-1730.
    4. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    5. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    6. Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
    7. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    8. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    9. Chou, S.K. & Yang, W.M. & Li, J. & Li, Z.W., 2010. "Porous media combustion for micro thermophotovoltaic system applications," Applied Energy, Elsevier, vol. 87(9), pages 2862-2867, September.
    10. Peng, Qingguo & Jiaqiang, E & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Zhang, Feng & Meng, Tian & Qiu, Runzhi, 2019. "Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses," Energy, Elsevier, vol. 173(C), pages 540-547.
    11. Mujeebu, M. Abdul & Abdullah, M.Z. & Bakar, M.Z. Abu & Mohamad, A.A. & Abdullah, M.K., 2009. "Applications of porous media combustion technology - A review," Applied Energy, Elsevier, vol. 86(9), pages 1365-1375, September.
    12. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    13. Wu, H. & Kaviany, M. & Kwon, O.C., 2018. "Thermophotovoltaic power conversion using a superadiabatic radiant burner," Applied Energy, Elsevier, vol. 209(C), pages 392-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    2. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    3. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    4. He, Ziqiang & Zhang, Lei & Li, Xiuquan & You, Jingxiang & Xue, Zongguo & Yan, Yunfei, 2023. "Heat transfer enhancement and pressure loss analysis of hydrogen-fueled microcombustor with slinky projection shape channel for micro-thermophotovoltaic system," Energy, Elsevier, vol. 283(C).
    5. Gao, Lingjie & Tang, Aikun & Cai, Tao & Tenkolu, Getachew Alemu, 2024. "Experimental analysis and multi-objective optimization of flame dynamics and combustion performance in methane-fueled slit-type combustors," Applied Energy, Elsevier, vol. 355(C).
    6. Xiao Yang & Zhihong He & Lei Zhao & Shikui Dong & Heping Tan, 2019. "Effect of Channel Diameter on the Combustion and Thermal Behavior of a Hydrogen/Air Premixed Flame in a Swirl Micro-Combustor," Energies, MDPI, vol. 12(20), pages 1-16, October.
    7. Long Zhang & Shanshan Zhang & Hua Zhou & Zhuyin Ren & Hongchuan Wang & Xiuxun Wang, 2022. "Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges," Energies, MDPI, vol. 15(23), pages 1-14, December.
    8. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan, 2020. "Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System," Energies, MDPI, vol. 13(22), pages 1-15, November.
    10. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    2. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    3. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    4. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Hussain, C.M. Iftekhar & Duffy, Aidan & Norton, Brian, 2020. "Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation," Applied Energy, Elsevier, vol. 259(C).
    6. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    7. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).
    8. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    9. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).
    10. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    11. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    12. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    13. Yang, Xiao & He, Zhihong & Cha, Suna & Zhao, Lei & Dong, Shikui & Tan, Heping, 2020. "Parametric analysis on the combustion and thermal performance of a swirl micro-combustor for micro thermophotovoltaic system," Energy, Elsevier, vol. 198(C).
    14. Tian Zhou & Zhiqiang Sun & Saiwei Li & Huawei Liu & Danqing Yi, 2016. "Design and Optimization of Thermophotovoltaic System Cavity with Mirrors," Energies, MDPI, vol. 9(9), pages 1-11, September.
    15. Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
    16. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    17. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    18. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    19. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    20. Shan, Shiquan & Tian, Jialu & Chen, Binghong & Zhang, Yanwei & Zhou, Zhijun, 2023. "Theoretical and technical analysis of the photo-thermal energy cascade conversion for fuel with high-temperature combustion," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.