IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp558-570.html
   My bibliography  Save this article

Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors

Author

Listed:
  • Tang, Aikun
  • Cai, Tao
  • Deng, Jiang
  • Zhao, Dan
  • Huang, Qiuhan
  • Zhou, Chen

Abstract

Flame structure transitions of propane/air premixed combustion in a micro-planar quartz glass combustor in the present study have been extensively investigated using a high-speed digital camera. Six different flame propagation modes, namely, flame repetitive extinction and ignition (FREI), cellular flame, planar flame, U-shaped, inclined and spinning flames, are observed with varying inlet velocity and equivalence ratio. The FREI and cellular flames as well as spinning flames, for the first time, are experimentally discovered in micro-planar straight channel combustor. Based on the upper and lower limit of each flame mode, the flame structure regime diagram is constructed. Experimental observations indicate that different flame propagation modes may coexist during transition due to the hysteresis phenomenon. The effects of equivalence ratio, channel length and channel height on flame characteristics are analyzed. Results show that channel length has minimal effect on flame structure, whereas channel height significantly affects flame propagation behavior. It is also found that the flame dynamics is much more complicated with wider channel height. Furthermore, it is worthy of pointing out that the inclined flames disappears as the channel height is decreased from 3 to 2.5 and 2.0 mm, and the ultimate flame is U-shaped at large inlet velocity.

Suggested Citation

  • Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:558-570
    DOI: 10.1016/j.energy.2019.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan, Jianlong & Zhao, Haibo, 2017. "Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 139(C), pages 366-379.
    2. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    3. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    4. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2016. "Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor," Energy, Elsevier, vol. 113(C), pages 193-203.
    5. Wang, Hongmin & Wei, Chunzhi & Zhao, Pinghui & Ye, Taohong, 2014. "Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion," Energy, Elsevier, vol. 72(C), pages 195-200.
    6. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2014. "Combustion of propane with Pt and Rh catalysts in a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 130(C), pages 350-356.
    7. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    8. Baigmohammadi, Mohammadreza & Sarrafan Sadeghi, Soroush & Tabejamaat, Sadegh & Zarvandi, Jalal, 2013. "Numerical study of the effects of wire insertion on CH4(methane)/AIR pre-mixed flame in a micro combustor," Energy, Elsevier, vol. 54(C), pages 271-284.
    9. Vijayan, V. & Gupta, A.K., 2010. "Combustion and heat transfer at meso-scale with thermal recuperation," Applied Energy, Elsevier, vol. 87(8), pages 2628-2639, August.
    10. Chou, S.K. & Yang, W.M. & Li, J. & Li, Z.W., 2010. "Porous media combustion for micro thermophotovoltaic system applications," Applied Energy, Elsevier, vol. 87(9), pages 2862-2867, September.
    11. Chou, S.K. & Yang, W.M. & Chua, K.J. & Li, J. & Zhang, K.L., 2011. "Development of micro power generators - A review," Applied Energy, Elsevier, vol. 88(1), pages 1-16, January.
    12. Alipoor, Alireza & Mazaheri, Kiumars, 2016. "Combustion characteristics and flame bifurcation in repetitive extinction-ignition dynamics for premixed hydrogen-air combustion in a heated micro channel," Energy, Elsevier, vol. 109(C), pages 650-663.
    13. Veeraragavan, Ananthanarayanan, 2015. "On flame propagation in narrow channels with enhanced wall thermal conduction," Energy, Elsevier, vol. 93(P1), pages 631-640.
    14. Zarvandi, Jalal & Tabejamaat, Sadegh & Baigmohammadi, Mohammadreza, 2012. "Numerical study of the effects of heat transfer methods on CH4/(CH4 + H2)-AIR pre-mixed flames in a micro-stepped tube," Energy, Elsevier, vol. 44(1), pages 396-409.
    15. Yang, Wenming & Chou, Siawkiang & Chua, Kianjon & An, Hui & Karthikeyan, Kumarasamy & Zhao, Xing, 2012. "An advanced micro modular combustor-radiator with heat recuperation for micro-TPV system application," Applied Energy, Elsevier, vol. 97(C), pages 749-753.
    16. Alipoor, Alireza & Mazaheri, Kiumars, 2014. "Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 73(C), pages 367-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alipoor, Alireza & Mazaheri, Kiumars, 2020. "Maps of flame dynamics for premixed lean hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 194(C).
    2. Xu, Cangsu & Wang, Hanyu & Oppong, Francis & Li, Xiaolu & Zhou, Kangquan & Zhou, Wenhua & Wu, Siyuan & Wang, Chongming, 2020. "Determination of laminar burning characteristics of a surrogate for a pyrolysis fuel using constant volume method," Energy, Elsevier, vol. 190(C).
    3. Tang, Aikun & Cai, Tao & Li, Chong & Zhou, Chen & Gao, Lingjie, 2024. "Flame visualization and spectral analysis of combustion instability in a premixed methane/air-fueled micro-combustor," Energy, Elsevier, vol. 294(C).
    4. Gao, Lingjie & Tang, Aikun & Cai, Tao & Tenkolu, Getachew Alemu, 2024. "Experimental analysis and multi-objective optimization of flame dynamics and combustion performance in methane-fueled slit-type combustors," Applied Energy, Elsevier, vol. 355(C).
    5. Zhao, He & Zhao, Dan & Becker, Sid & Rong, Hui & Zhao, Xiaohuan, 2023. "Entropy generation and improved thermal performance investigation on a hydrogen-fuelled double-channel microcombustor with Y-shaped internal fins," Energy, Elsevier, vol. 283(C).
    6. Yang, Xiao & He, Zhihong & Cha, Suna & Zhao, Lei & Dong, Shikui & Tan, Heping, 2020. "Parametric analysis on the combustion and thermal performance of a swirl micro-combustor for micro thermophotovoltaic system," Energy, Elsevier, vol. 198(C).
    7. Sun, Bowen & Kang, Xin & Wang, Yu, 2020. "Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combu," Energy, Elsevier, vol. 207(C).
    8. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of thermal condition of solid wall on the stabilization of a preheated and holder-stabilized laminar premixed flame," Energy, Elsevier, vol. 200(C).
    9. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    10. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    2. Wan, Jianlong & Zhao, Haibo, 2018. "Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 157(C), pages 448-459.
    3. Wan, Jianlong & Zhao, Haibo, 2017. "Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 139(C), pages 366-379.
    4. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    5. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    6. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    7. Veeraragavan, Ananthanarayanan, 2015. "On flame propagation in narrow channels with enhanced wall thermal conduction," Energy, Elsevier, vol. 93(P1), pages 631-640.
    8. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    9. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    10. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2016. "Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor," Energy, Elsevier, vol. 113(C), pages 193-203.
    11. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    12. Yang, Xiao & Yang, Wenming & Dong, Shikui & Tan, Heping, 2020. "Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor," Energy, Elsevier, vol. 209(C).
    13. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    14. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Wang, Wei & Zuo, Zhengxing & Liu, Jinxiang, 2019. "Numerical study of the premixed propane/air flame characteristics in a partially filled micro porous combustor," Energy, Elsevier, vol. 167(C), pages 902-911.
    16. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of conjugate heat exchange of flame holder on laminar premixed flame stabilization in a meso-scale diverging combustor," Energy, Elsevier, vol. 198(C).
    17. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    18. Zuo, Wei & Zhang, Yuntian & Li, Qingqing & Li, Jing & He, Zhu, 2021. "Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 223(C).
    19. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    20. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Faghani-Lamraski, Morteza, 2017. "Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors," Energy, Elsevier, vol. 121(C), pages 657-675.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:558-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.