IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp349-360.html
   My bibliography  Save this article

Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air

Author

Listed:
  • Peng, Qingguo
  • E, Jiaqiang
  • Yang, W.M.
  • Xu, Hongpeng
  • Chen, Jingwei
  • Meng, Tian
  • Qiu, Runzhi

Abstract

An investigation of premixed H2/air combustion in a nozzle inlet micro tube has been carried out. The effects of inlet shape on combustion characteristics, flow field, specie distribution and thermal performance are presented and discussed. Also, effects of inlet mass flow rate and equivalence ratio on the entropy generations of combustion in the micro tubes are analyzed. The results show that the mean outer wall temperature and the emitter theoretical radiant efficiency of the nozzle inlet micro tube is higher than that of the straight micro tube. The total entropy generation rate of the nozzle inlet micro tube is lower than the straight micro tube. Moreover, the Inlet 2 and Inlet 3 nozzle inlet micro tube obtain a higher mean outer wall temperature and a lower exergy destruction, which are more appropriate for the application of the micro thermophotovoltaic (TPV) system.

Suggested Citation

  • Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:349-360
    DOI: 10.1016/j.energy.2018.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Dan & Li, Lei, 2015. "Effect of choked outlet on transient energy growth analysis of a thermoacoustic system," Applied Energy, Elsevier, vol. 160(C), pages 502-510.
    2. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    3. Zhao, Dan & Li, Shen & Zhao, He, 2016. "Entropy-involved energy measure study of intrinsic thermoacoustic oscillations," Applied Energy, Elsevier, vol. 177(C), pages 570-578.
    4. Yilmaz, Harun & Cam, Omer & Yilmaz, Ilker, 2017. "Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames," Energy, Elsevier, vol. 135(C), pages 585-597.
    5. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    6. Fan, Aiwu & Zhang, He & Wan, Jianlong, 2017. "Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body," Energy, Elsevier, vol. 123(C), pages 252-259.
    7. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    2. Yan, Yunfei & Liu, Ying & Li, Lixian & Cui, Yu & Zhang, Li & Yang, Zhongqing & Zhang, Zhien, 2019. "Numerical comparison of H2/air catalytic combustion characteristic of micro–combustors with a conventional, slotted or controllable slotted bluff body," Energy, Elsevier, vol. 189(C).
    3. Xiang, Ying & Yuan, Zili & Wang, Shixuan & Fan, Aiwu, 2019. "Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor," Energy, Elsevier, vol. 179(C), pages 315-322.
    4. Peng, Qingguo & Jiaqiang, E & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Zhang, Feng & Meng, Tian & Qiu, Runzhi, 2019. "Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses," Energy, Elsevier, vol. 173(C), pages 540-547.
    5. Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
    6. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    7. Sun, Bowen & Kang, Xin & Wang, Yu, 2020. "Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combu," Energy, Elsevier, vol. 207(C).
    8. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    9. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    10. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    2. Yan, Yunfei & Liu, Ying & Li, Lixian & Cui, Yu & Zhang, Li & Yang, Zhongqing & Zhang, Zhien, 2019. "Numerical comparison of H2/air catalytic combustion characteristic of micro–combustors with a conventional, slotted or controllable slotted bluff body," Energy, Elsevier, vol. 189(C).
    3. Peng, Qingguo & Jiaqiang, E & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Zhang, Feng & Meng, Tian & Qiu, Runzhi, 2019. "Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses," Energy, Elsevier, vol. 173(C), pages 540-547.
    4. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    5. Wan, Jianlong & Zhao, Haibo, 2018. "Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 157(C), pages 448-459.
    6. Zuo, Wei & Li, Qingqing & He, Zhu & Li, Yawei, 2020. "Numerical investigations on thermal performance enhancement of hydrogen-fueled micro planar combustors with injectors for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 194(C).
    7. Ni, Siliang & Zhao, Dan & Sellier, Mathieu & Li, Junwei & Chen, Xinjian & Li, Xinyan & Cao, Feng & Li, Weixuan, 2021. "Thermal performances and emitter efficiency improvement studies on premixed micro-combustors with different geometric shapes for thermophotovoltaics applications," Energy, Elsevier, vol. 226(C).
    8. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    9. Yang, Xiao & Yang, Wenming & Dong, Shikui & Tan, Heping, 2020. "Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor," Energy, Elsevier, vol. 209(C).
    10. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    11. Aravind, B. & Hiranandani, Karan & Kumar, Sudarshan, 2020. "Development of an ultra-high capacity hydrocarbon fuel based micro thermoelectric power generator," Energy, Elsevier, vol. 206(C).
    12. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Han, Nuomin & Zhao, Dan & Schluter, Jorg U. & Goh, Ernest Seach & Zhao, He & Jin, Xiao, 2016. "Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow," Applied Energy, Elsevier, vol. 178(C), pages 672-680.
    14. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    15. Wan, Jianlong & Xu, Zuwei & Zhao, Haibo, 2018. "Methane/air premixed flame topology structure in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 165(PB), pages 802-811.
    16. Tang, Shihao & Wei, Jia & Xie, Bo & Shi, Zhiwei & Wang, Hao & Tian, Xinghua & He, Biao & Peng, Qingguo, 2023. "Experimental and numerical investigation on H2-fueled thermophotovoltaic micro tube with multi-cavity," Energy, Elsevier, vol. 274(C).
    17. Pan, Jianfeng & Zhang, Chenxin & Pan, Zhenhua & Wu, Di & Zhu, Yuejin & Lu, Qingbo & Zhang, Yi, 2020. "Investigation on the effect of bluff body ball on the combustion characteristics for methane/oxygen in micro combustor," Energy, Elsevier, vol. 190(C).
    18. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    19. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    20. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:349-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.