IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318689.html
   My bibliography  Save this article

Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation

Author

Listed:
  • Hussain, C.M. Iftekhar
  • Duffy, Aidan
  • Norton, Brian

Abstract

Medium operating temperature hybrid solar-biomass TPV power plant design requires complex integration of multiple high temperature processes with low band-gap TPV cells. A 0.72 eV band-gap GaSb TPV cell has been used in thermophotovoltaic (TPV) systems operating at temperatures above 1400 °C. Low band-gap TPV cells, such as InGaAs (Eg = 0.55 eV) and InAs (Eg = 0.36 eV) could enable a TPV system to operate optimally at temperatures ≈1000 °C. To examine this, two hybrid solar-biomass TPV system configurations are studied using TRNSYS simulation that incorporates a new algorithm for TPV. It is found that in a high solar fraction CSP power plant, a TPV system could recover surplus thermal energy gained from solar energy at mid-days that would otherwise be unused.

Suggested Citation

  • Hussain, C.M. Iftekhar & Duffy, Aidan & Norton, Brian, 2020. "Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318689
    DOI: 10.1016/j.apenergy.2019.114181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    2. Bitnar, Bernd & Durisch, Wilhelm & Holzner, Reto, 2013. "Thermophotovoltaics on the move to applications," Applied Energy, Elsevier, vol. 105(C), pages 430-438.
    3. Ferrari, Claudio & Melino, Francesco & Pinelli, Michele & Spina, Pier Ruggero, 2014. "Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences," Applied Energy, Elsevier, vol. 113(C), pages 1717-1730.
    4. Farges, O. & Bézian, J.J. & El Hafi, M., 2018. "Global optimization of solar power tower systems using a Monte Carlo algorithm: Application to a redesign of the PS10 solar thermal power plant," Renewable Energy, Elsevier, vol. 119(C), pages 345-353.
    5. Shrivastava, R.L. & Vinod Kumar, & Untawale, S.P., 2017. "Modeling and simulation of solar water heater: A TRNSYS perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 126-143.
    6. Biencinto, Mario & González, Lourdes & Valenzuela, Loreto, 2016. "A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS," Applied Energy, Elsevier, vol. 161(C), pages 133-142.
    7. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    8. Massaguer, E. & Massaguer, A. & Montoro, L. & Gonzalez, J.R., 2014. "Development and validation of a new TRNSYS type for the simulation of thermoelectric generators," Applied Energy, Elsevier, vol. 134(C), pages 65-74.
    9. Wu, H. & Kaviany, M. & Kwon, O.C., 2018. "Thermophotovoltaic power conversion using a superadiabatic radiant burner," Applied Energy, Elsevier, vol. 209(C), pages 392-399.
    10. Bava, Federico & Furbo, Simon, 2017. "Development and validation of a detailed TRNSYS-Matlab model for large solar collector fields for district heating applications," Energy, Elsevier, vol. 135(C), pages 698-708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Qiang & Li, Zihao & Zhao, Wenyao & Zhang, Gaocheng & Xiong, Xinyu & Wu, Zhiyong, 2024. "Modeling and control strategy optimizing of solar flux distribution in a four quadrant and adjustable focusing solar furnace," Applied Energy, Elsevier, vol. 363(C).
    2. Meng, Caifeng & Liu, Yunpeng & Xu, Zhiheng & Wang, Hongyu & Tang, Xiaobin, 2022. "Selective emitter with core–shell nanosphere structure for thermophotovoltaic systems," Energy, Elsevier, vol. 239(PA).
    3. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan, 2020. "Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System," Energies, MDPI, vol. 13(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Shiquan & Tian, Jialu & Chen, Binghong & Zhang, Yanwei & Zhou, Zhijun, 2023. "Theoretical and technical analysis of the photo-thermal energy cascade conversion for fuel with high-temperature combustion," Energy, Elsevier, vol. 263(PD).
    2. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    3. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan, 2020. "Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System," Energies, MDPI, vol. 13(22), pages 1-15, November.
    4. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    5. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    6. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
    8. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    9. Tian Zhou & Zhiqiang Sun & Saiwei Li & Huawei Liu & Danqing Yi, 2016. "Design and Optimization of Thermophotovoltaic System Cavity with Mirrors," Energies, MDPI, vol. 9(9), pages 1-11, September.
    10. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    11. Qiu, K. & Hayden, A.C.S., 2014. "Implementation of a TPV integrated boiler for micro-CHP in residential buildings," Applied Energy, Elsevier, vol. 134(C), pages 143-149.
    12. Zhang, Chao & Tang, Liangliang & Liu, Yan & Liu, Zhuming & Liu, Wei & Qiu, Kuanrong, 2020. "A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance," Energy, Elsevier, vol. 195(C).
    13. Wijewardane, S. & Goswami, Yogi, 2014. "Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems," Applied Energy, Elsevier, vol. 134(C), pages 204-214.
    14. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    15. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).
    16. Liu, Z. & Qiu, K., 2017. "A TPV power system consisting of a composite radiant burner and combined cells," Energy, Elsevier, vol. 141(C), pages 892-897.
    17. Wang, Hao & Peng, Qingguo & Tian, Xinghua & Yan, Feng & Wei, Depeng & Liu, Hui, 2024. "Experimental and numerical investigation on H2-fueled micro-thermophotovoltaic with CH4 and C3H8 blending in a tube fully/partially inserted porous media," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    18. Bava, Federico & Furbo, Simon, 2018. "Impact of different improvement measures on the thermal performance of a solar collector field for district heating," Energy, Elsevier, vol. 144(C), pages 816-825.
    19. Lugo, S. & García-Valladares, O. & Best, R. & Hernández, J. & Hernández, F., 2019. "Numerical simulation and experimental validation of an evacuated solar collector heating system with gas boiler backup for industrial process heating in warm climates," Renewable Energy, Elsevier, vol. 139(C), pages 1120-1132.
    20. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.