IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v170y2016icp269-277.html
   My bibliography  Save this article

Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization

Author

Listed:
  • Pan, Shu-Yuan
  • Lorente Lafuente, Ana Maria
  • Chiang, Pen-Chi

Abstract

Multi-waste treatment of slag and wastewater can be combined with CO2 capture in the steelmaking industry by the high-gravity carbonation (i.e., HiGCarb) process using a rotating packed bed. In this study, the HiGCarb process is comprehensively evaluated by an engineering, environmental and economic (3E) triangle model. The feedstock CO2 for the HiGCarb process can be obtained directly from the industrial stacks, eliminating the need for additional CO2 concentration and transportation. The reacted steelmaking slag, i.e., basic oxygen furnace slag (BOFS), is suited as cement substitution material, avoiding environmental burden from the cement industry, also a CO2-intensive emission source. Significant environmental benefits can be realized by establishing the waste-to-resource supply chain between the steelmaking and cement industries. The life-cycle assessment shows a net CO2 capture amount by the HiGCarb process of 282kg-CO2/t-BOFS, accompanied by a CO2 avoidance of 997kg-CO2/t-BOFS due to the product utilization. Moreover, the amount of revenue gained was estimated to be 20.2–23.2 USD/t-BOFS treated by the HiGCarb process. According to the 3E triangle model, the HiGCarb process is shown to be environmentally promising and economically feasible due to its high overall engineering performance, which makes it suitable as a potential CO2 sink in industry.

Suggested Citation

  • Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
  • Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:269-277
    DOI: 10.1016/j.apenergy.2016.02.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916302598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Shu-Yuan & Eleazar, Elisa G. & Chang, E-E & Lin, Yi-Pin & Kim, Hyunook & Chiang, Pen-Chi, 2015. "Systematic approach to determination of optimum gas-phase mass transfer rate for high-gravity carbonation process of steelmaking slags in a rotating packed bed," Applied Energy, Elsevier, vol. 148(C), pages 23-31.
    2. Han, Sang-Jun & Im, Hye Jin & Wee, Jung-Ho, 2015. "Leaching and indirect mineral carbonation performance of coal fly ash-water solution system," Applied Energy, Elsevier, vol. 142(C), pages 274-282.
    3. Galo, Joaquim J.M. & Macedo, Maria N.Q. & Almeida, Luiz A.L. & Lima, Antonio C.C., 2014. "Criteria for smart grid deployment in Brazil by applying the Delphi method," Energy, Elsevier, vol. 70(C), pages 605-611.
    4. Dri, Marco & Sanna, Aimaro & Maroto-Valer, M. Mercedes, 2014. "Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products," Applied Energy, Elsevier, vol. 113(C), pages 515-523.
    5. Wee, Jung-Ho, 2013. "A review on carbon dioxide capture and storage technology using coal fly ash," Applied Energy, Elsevier, vol. 106(C), pages 143-151.
    6. Yi, Qun & Feng, Jie & Wu, Yanli & Li, Wenying, 2014. "3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system," Energy, Elsevier, vol. 66(C), pages 285-294.
    7. Jian Zhang & Guishan Yang & Lijie Pu & Buzhuo Peng, 2014. "Trends and Spatial Distribution Characteristics of Sustainability in Eastern Anhui Province, China," Sustainability, MDPI, vol. 6(12), pages 1-17, November.
    8. Pan, Shu-Yuan & Chiang, Pen-Chi & Chen, Yi-Hung & Tan, Chung-Sung & Chang, E.-E., 2014. "Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion," Applied Energy, Elsevier, vol. 113(C), pages 267-276.
    9. Kodama, Satoshi & Nishimoto, Taiki & Yamamoto, Naoki & Yogo, Katsunori & Yamada, Koichi, 2008. "Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution," Energy, Elsevier, vol. 33(5), pages 776-784.
    10. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    11. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    12. Nduagu, Experience & Romão, Inês & Fagerlund, Johan & Zevenhoven, Ron, 2013. "Performance assessment of producing Mg(OH)2 for CO2 mineral sequestration," Applied Energy, Elsevier, vol. 106(C), pages 116-126.
    13. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    14. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    2. Janusz Zdeb & Natalia Howaniec, 2022. "Energy Sector Derived Combustion Products Utilization—Current Advances in Carbon Dioxide Mineralization," Energies, MDPI, vol. 15(23), pages 1-28, November.
    3. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    4. Yu, Cheng-Hsiu & Chen, Ming-Tsz & Chen, Hao & Tan, Chung-Sung, 2016. "Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture," Applied Energy, Elsevier, vol. 175(C), pages 269-276.
    5. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    6. Yi-Jia Xing & Tse-Lun Chen & Meng-Yao Gao & Si-Lu Pei & Wei-Bin Pan & Pen-Chi Chiang, 2021. "Comprehensive Performance Evaluation of Green Infrastructure Practices for Urban Watersheds Using an Engineering–Environmental–Economic (3E) Model," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    7. Ming-Sheng Ko & Tong-Bou Chang & Cho-Yu Lee & Jhong-Wei Huang & Chin-Fong Lim, 2021. "Optimization of Cyclone-Type Rotary Kiln Reactor for Carbonation of BOF Slag," Sustainability, MDPI, vol. 13(20), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    2. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    3. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    4. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    5. Pan, Shu-Yuan & Chiang, Pen-Chi & Chen, Yi-Hung & Tan, Chung-Sung & Chang, E.-E., 2014. "Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion," Applied Energy, Elsevier, vol. 113(C), pages 267-276.
    6. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    7. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    8. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    9. Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
    10. Xie, Heping & Gao, Xiaolin & Liu, Tao & Chen, Bin & Wu, Yifan & Jiang, Wenchuan, 2020. "Electricity generation by a novel CO2 mineralization cell based on organic proton-coupled electron transfer," Applied Energy, Elsevier, vol. 261(C).
    11. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    12. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    13. Ming-Sheng Ko & Tong-Bou Chang & Cho-Yu Lee & Jhong-Wei Huang & Chin-Fong Lim, 2021. "Optimization of Cyclone-Type Rotary Kiln Reactor for Carbonation of BOF Slag," Sustainability, MDPI, vol. 13(20), pages 1-11, October.
    14. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    16. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    17. Yafei Zhao & Ken-ichi Itakura, 2023. "A State-of-the-Art Review on Technology for Carbon Utilization and Storage," Energies, MDPI, vol. 16(10), pages 1-22, May.
    18. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    19. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    20. Jo, Hoyong & Lee, Min-Gu & Park, Jinwon & Jung, Kwang-Deog, 2017. "Preparation of high-purity nano-CaCO3 from steel slag," Energy, Elsevier, vol. 120(C), pages 884-894.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:170:y:2016:i:c:p:269-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.