IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221002747.html
   My bibliography  Save this article

Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass

Author

Listed:
  • Kuo, Po-Chih
  • Illathukandy, Biju
  • Wu, Wei
  • Chang, Jo-Shu

Abstract

In this study, an energy, exergy, and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels, namely, raw microalgae (RM) and three torrefied microalgal fuels (TM200, TM250, and TM300), are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-to-biomass (S/B) ratio on the syngas and hydrogen yields, and energy and exergy efficiencies of plasma gasification (ηEn,PG, ηEx,PG) and hydrogen production (ηEn,H2, ηEx,H2) are taken into account. Results show that the optimal S/B ratios of RM, TM200, TM250, and TM300 are 0.354, 0.443, 0.593, and 0.760 respectively, occurring at the carbon boundary points (CBPs), where the maximum values of ηEn,PG, ηEx,PG, ηEn,H2, and ηEx,H2 are also achieved. At CBPs, torrefied microalgae as feedstock lower the ηEn,PG, ηEx,PG, ηEn,H2, and ηEx,H2 because of their improved calorific value after undergoing torrefaction, and the increased plasma energy demand compared to the RM. However, beyond CBPs the torrefied feedstock displays better performance. A comparative life cycle analysis indicates that TM300 exhibits the highest greenhouse gases (GHG) emissions and the lowest net energy ratio (NER), due to the indirect emissions associated with electricity consumption.

Suggested Citation

  • Kuo, Po-Chih & Illathukandy, Biju & Wu, Wei & Chang, Jo-Shu, 2021. "Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002747
    DOI: 10.1016/j.energy.2021.120025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Markus A. & Weiss, Annika, 2014. "Life cycle costs for the optimized production of hydrogen and biogas from microalgae," Energy, Elsevier, vol. 78(C), pages 84-93.
    2. Ramirez, Angel D. & Rivela, Beatriz & Boero, Andrea & Melendres, Ana M., 2019. "Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience," Energy Policy, Elsevier, vol. 125(C), pages 467-477.
    3. Oh, Se-Young & Yun, Seokwon & Kim, Jin-Kuk, 2018. "Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process," Applied Energy, Elsevier, vol. 216(C), pages 311-322.
    4. Ramachandran, Srikkanth & Yao, Zhiyi & You, Siming & Massier, Tobias & Stimming, Ulrich & Wang, Chi-Hwa, 2017. "Life cycle assessment of a sewage sludge and woody biomass co-gasification system," Energy, Elsevier, vol. 137(C), pages 369-376.
    5. Oruc, Onur & Dincer, Ibrahim, 2021. "Development and performance assessment power generating systems using clean hydrogen," Energy, Elsevier, vol. 215(PB).
    6. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
    7. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    8. Adnan, Muflih A. & Xiong, Qingang & Muraza, Oki & Hossain, Mohammad M., 2020. "Gasification of wet microalgae to produce H2-rich syngas and electricity: A thermodynamic study considering exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 2195-2205.
    9. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    10. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    11. Duan, Pei-Gao & Yang, Shi-Kun & Xu, Yu-Ping & Wang, Feng & Zhao, Dan & Weng, Yu-Jing & Shi, Xian-Lei, 2018. "Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass," Energy, Elsevier, vol. 155(C), pages 734-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    2. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    3. Marcin Dębowski & Magda Dudek & Joanna Kazimierowicz & Piera Quattrocelli & Paulina Rusanowska & Łukasz Barczak & Anna Nowicka & Marcin Zieliński, 2024. "Analysis of Multi-Biofuel Production during Cultivation of the Green Microalga Tetraselmis subscordiformis," Energies, MDPI, vol. 17(15), pages 1-20, July.
    4. Pawlak-Kruczek, Halina & Mularski, Jakub & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Mączka, Tadeusz & Sadowski, Krzysztof & Hulisz, Patryk, 2023. "Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis," Energy, Elsevier, vol. 279(C).
    5. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    6. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    7. Wu, Haoran & Chen, Heng & Fan, Lanxin & Pan, Peiyuan & Xu, Gang & Wu, Lining, 2024. "Performance analysis of a novel co-generation system integrating a small modular reactor and multiple hydrogen production equipment considering peak shaving," Energy, Elsevier, vol. 302(C).
    8. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    9. Yin, Kexin & Wang, Yangyang & Wu, Qiming & Zhang, Jifu & Zhou, Yaru & Xu, Zaifeng & Zhu, Zhaoyou & Qi, Jianguang & Wang, Yinglong & Cui, Peizhe, 2024. "Thermodynamic analysis of a plasma co-gasification process for hydrogen production using sludge and food waste as mixed raw materials," Renewable Energy, Elsevier, vol. 222(C).
    10. Zhao, Xinyue & Chen, Heng & Li, Sarengaowa & Li, Wenchao & Pan, Peiyuan & Liu, Tao & Wu, Lining & Xu, Gang, 2023. "Thermodynamic and economic analysis of a novel design combining waste tire pyrolysis with silicon production waste heat recovery and organic Rankine cycle," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    2. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    3. Jau-Jang Lu & Wei-Hsin Chen, 2013. "Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres," Energies, MDPI, vol. 7(1), pages 1-15, December.
    4. Jiang, Shengjuan & Hu, Xun & Xia, Daohong & Li, Chun-Zhu, 2016. "Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature," Applied Energy, Elsevier, vol. 183(C), pages 542-551.
    5. Wen, Jia-Long & Sun, Shao-Long & Yuan, Tong-Qi & Xu, Feng & Sun, Run-Cang, 2014. "Understanding the chemical and structural transformations of lignin macromolecule during torrefaction," Applied Energy, Elsevier, vol. 121(C), pages 1-9.
    6. Morsy, Fatthy Mohamed, 2015. "CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system," Energy, Elsevier, vol. 87(C), pages 594-604.
    7. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    8. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    9. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    10. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    11. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    12. Gai, Wei-Zhuo & Wang, Le-Yao & Lu, Meng-Yao & Deng, Zhen-Yan, 2023. "Effect of low concentration hydroxides on Al hydrolysis for hydrogen production," Energy, Elsevier, vol. 268(C).
    13. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    14. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
    15. Oko, Eni & Ramshaw, Colin & Wang, Meihong, 2018. "Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 223(C), pages 302-316.
    16. Neves, Daniel & Thunman, Henrik & Tarelho, Luís & Larsson, Anton & Seemann, Martin & Matos, Arlindo, 2014. "Method for online measurement of the CHON composition of raw gas from biomass gasifier," Applied Energy, Elsevier, vol. 113(C), pages 932-945.
    17. Chouchene, Ajmia & Jeguirim, Mejdi & Favre-Reguillon, Alain & Trouvé, Gwenaelle & Le Buzit, Gérard & Khiari, Besma & Zagrouba, Fethi, 2012. "Energetic valorisation of olive mill wastewater impregnated on low cost absorbent: Sawdust versus olive solid waste," Energy, Elsevier, vol. 39(1), pages 74-81.
    18. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    19. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    20. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.