IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic64.html
   My bibliography  Save this article

Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept

Author

Listed:
  • García, Antonio
  • Monsalve-Serrano, Javier
  • Villalta, David
  • Lago Sari, Rafael
  • Gordillo Zavaleta, Victor
  • Gaillard, Patrick

Abstract

The dual-mode dual-fuel combustion strategy allows operating over the entire engine map by implementing a diffusive dual-fuel combustion at high engine loads. This requires increasing the amount of exhaust gas recirculation to control the NOx emissions, which penalizes the soot levels. At these conditions, the use of non-sooting fuels as the e-Fischer Tropsch Diesel (e-FT) and oxymethylene dimethyl ethers (OMEx) could be a potential way to avoid the NOx-soot trade-off. The experimental results acquired in a compression ignition multi-cylinder medium-duty engine evidence that the higher oxygen content of OMEx allows reducing the soot emissions at high loads to near zero levels, while e-FT promotes a soot reduction of around 20% as compared to diesel. Nonetheless, the low lower heating value of OMEx leads to excessive injection durations, enlarging the combustion process and increasing the fuel consumption around 1.3–7.2% and 1.4–5.3% as compared to diesel and e-FT, respectively, depending on the engine load. Finally, the well to wheel analysis confirms the potential in reducing the carbon dioxide footprint of OMEx (14.8–69%) and e-FT (0.3–38.5%) compared to diesel, as they can be synthetized via direct air capture as a source of carbon and using renewable energy.

Suggested Citation

  • García, Antonio & Monsalve-Serrano, Javier & Villalta, David & Lago Sari, Rafael & Gordillo Zavaleta, Victor & Gaillard, Patrick, 2019. "Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:64
    DOI: 10.1016/j.apenergy.2019.113622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedrozo, Vinícius B. & May, Ian & Dalla Nora, Macklini & Cairns, Alasdair & Zhao, Hua, 2016. "Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load," Applied Energy, Elsevier, vol. 165(C), pages 166-182.
    2. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    3. Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.
    4. Pedrozo, Vinícius B. & May, Ian & Zhao, Hua, 2017. "Exploring the mid-load potential of ethanol-diesel dual-fuel combustion with and without EGR," Applied Energy, Elsevier, vol. 193(C), pages 263-275.
    5. Saxena, Samveg & Vuilleumier, David & Kozarac, Darko & Krieck, Martin & Dibble, Robert & Aceves, Salvador, 2014. "Optimal operating conditions for wet ethanol in a HCCI engine using exhaust gas heat recovery," Applied Energy, Elsevier, vol. 116(C), pages 269-277.
    6. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Lucchini, T. & Della Torre, A. & D’Errico, G. & Onorati, A., 2019. "Modeling advanced combustion modes in compression ignition engines with tabulated kinetics," Applied Energy, Elsevier, vol. 247(C), pages 537-548.
    8. Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael, 2018. "Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles," Energy, Elsevier, vol. 157(C), pages 19-30.
    9. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier, 2015. "Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine," Energy, Elsevier, vol. 90(P2), pages 1261-1271.
    10. Benajes, Jesús & García, Antonio & Pastor, José Manuel & Monsalve-Serrano, Javier, 2016. "Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads," Energy, Elsevier, vol. 98(C), pages 64-77.
    11. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    2. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Gaillard, Patrick, 2020. "Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis," Applied Energy, Elsevier, vol. 279(C).
    3. Pastor, Jose V. & García-Oliver, Jose M. & Micó, Carlos & Tejada, Francisco J., 2023. "Characterization of the oxymethylene ether fuels flame structure for ECN Spray A and Spray D nozzles," Applied Energy, Elsevier, vol. 332(C).
    4. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe & Vassallo, Alberto & Pesce, Francesco Concetto, 2021. "Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis," Energy, Elsevier, vol. 221(C).
    5. Molina, S. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions," Applied Energy, Elsevier, vol. 285(C).
    6. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    7. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    8. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Pathways to achieve future CO2 emission reduction targets for bus transit networks," Energy, Elsevier, vol. 244(PB).
    9. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    2. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    3. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    4. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Gaillard, Patrick, 2020. "Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis," Applied Energy, Elsevier, vol. 279(C).
    5. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Guan, Wei & Gu, Jinkai & Pan, Xiubin & Pan, Mingzhang & Wang, Xinyan & Zhao, Hua & Tan, Dongli & Fu, Changcheng & Pedrozo, Vinícius B. & Zhang, Zhiqing, 2024. "Improvement of the light-load combustion control strategy for a heavy-duty diesel engine fueled with diesel/methonal by RSM-NSGA III," Energy, Elsevier, vol. 297(C).
    7. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    8. Huang, Haozhong & Zhu, Zhaojun & Zhu, Jizhen & Lv, Delin & Pan, Yuping & Wei, Hongling & Teng, Wenwen, 2019. "Experimental and numerical study of pre-injection effects on diesel-n-butanol blends combustion," Applied Energy, Elsevier, vol. 249(C), pages 377-391.
    9. Zhong, Shenghui & Zhang, Fan & Jangi, Mehdi & Bai, Xue-Song & Yao, Mingfa & Peng, Zhijun, 2020. "Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime," Applied Energy, Elsevier, vol. 275(C).
    10. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    11. Gharehghani, Ayat & Abbasi, Hamid Reza & Alizadeh, Pouria, 2021. "Application of machine learning tools for constrained multi-objective optimization of an HCCI engine," Energy, Elsevier, vol. 233(C).
    12. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Pathways to achieve future CO2 emission reduction targets for bus transit networks," Energy, Elsevier, vol. 244(PB).
    13. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    14. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    15. Pedrozo, Vinícius B. & Zhao, Hua, 2018. "Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling," Applied Energy, Elsevier, vol. 210(C), pages 138-151.
    16. Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael, 2018. "Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles," Energy, Elsevier, vol. 157(C), pages 19-30.
    17. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).
    18. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    19. Charu Vikram Srivatsa & Shah Saud Alam & Bailey Spickler & Christopher Depcik, 2024. "Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine," Energies, MDPI, vol. 17(16), pages 1-26, August.
    20. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.