IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v247y2019icp537-548.html
   My bibliography  Save this article

Modeling advanced combustion modes in compression ignition engines with tabulated kinetics

Author

Listed:
  • Lucchini, T.
  • Della Torre, A.
  • D’Errico, G.
  • Onorati, A.

Abstract

New combustion modes for compression ignition engines are currently under investigation to achieve a further reduction noxious emissions and fuel consumption. Among them, partially premixed (PPC or PCCI) and dual fuel combustion (including RCCI) seem to be the most promising technologies. To support the design of new combustion systems, rapid and accurate models are required to correctly describe the fuel auto-ignition chemistry together with the complex structure of the diffusion flame due to the presence of different fuel jets. A combustion model based on tabulated kinetics was developed and presented in this work. Reaction rates and chemical composition are stored in a lookup table which is generated by processing results of auto-ignition calculations in a homogeneous reactor. Multi-component fuels are supported and the use of virtual species allows an easy integration with the Lagrangian spray model. Compared to approaches where chemical direct integration is employed, tabulated kinetics offers reduced computational time with a very similar level of accuracy such that it is suitable to be applied for engine design. The proposed approach was implemented in the Lib-ICE code which based on the OpenFOAM® technology. Validation was carried out considering conventional Diesel, PCCI and dual-fuel combustion. Satisfactory results were achieved, the proposed approach correctly predicted in-cylinder pressure development and pollutant formation in a wide range of operating conditions. The results also show that the model is consistent with energy conservation and can be applied in design phases of different engine configurations.

Suggested Citation

  • Lucchini, T. & Della Torre, A. & D’Errico, G. & Onorati, A., 2019. "Modeling advanced combustion modes in compression ignition engines with tabulated kinetics," Applied Energy, Elsevier, vol. 247(C), pages 537-548.
  • Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:537-548
    DOI: 10.1016/j.apenergy.2019.04.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919307081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Kar Mun & Ng, Hoon Kiat & Gan, Suyin, 2012. "In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study," Applied Energy, Elsevier, vol. 93(C), pages 466-478.
    2. Bougrine, S. & Richard, S. & Michel, J.-B. & Veynante, D., 2014. "Simulation of CO and NO emissions in a SI engine using a 0D coherent flame model coupled with a tabulated chemistry approach," Applied Energy, Elsevier, vol. 113(C), pages 1199-1215.
    3. Knop, Vincent & Michel, Jean-Baptiste & Colin, Olivier, 2011. "On the use of a tabulation approach to model auto-ignition during flame propagation in SI engines," Applied Energy, Elsevier, vol. 88(12), pages 4968-4979.
    4. Akhtar, Saad & Piffaretti, Stefano & Shamim, Tariq, 2018. "Numerical investigation of flame structure and blowout limit for lean premixed turbulent methane-air flames under high pressure conditions," Applied Energy, Elsevier, vol. 228(C), pages 21-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, Antonio & Monsalve-Serrano, Javier & Villalta, David & Lago Sari, Rafael & Gordillo Zavaleta, Victor & Gaillard, Patrick, 2019. "Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demesoukas, Sokratis & Brequigny, Pierre & Caillol, Christian & Halter, Fabien & Mounaïm-Rousselle, Christine, 2016. "0D modeling aspects of flame stretch in spark ignition engines and comparison with experimental results," Applied Energy, Elsevier, vol. 179(C), pages 401-412.
    2. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    3. Djouadi, Amel & Bentahar, Fatiha, 2016. "Combustion study of a spark-ignition engine from pressure cycles," Energy, Elsevier, vol. 101(C), pages 211-217.
    4. Yi, Chenyu & Epureanu, Bogdan I. & Hong, Sung-Kwon & Ge, Tony & Yang, Xiao Guang, 2016. "Modeling, control, and performance of a novel architecture of hybrid electric powertrain system," Applied Energy, Elsevier, vol. 178(C), pages 454-467.
    5. Ng, Hoon Kiat & Gan, Suyin & Ng, Jo-Han & Pang, Kar Mun, 2013. "Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism," Applied Energy, Elsevier, vol. 102(C), pages 1275-1287.
    6. Chiet Choo, Edwin Jia & Cheng, Xinwei & Scribano, Gianfranco & Ng, Hoon Kiat & Gan, Suyin, 2023. "Numerical investigation on the temporal and quasi-steady state soot characteristics of n-dodecane-n-butanol spray combustion," Energy, Elsevier, vol. 268(C).
    7. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    8. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    9. Wen, Xu & Luo, Kun & Luo, Yujuan & Kassem, Hassan I. & Jin, Hanhui & Fan, Jianren, 2016. "Large eddy simulation of a semi-industrial scale coal furnace using non-adiabatic three-stream flamelet/progress variable model," Applied Energy, Elsevier, vol. 183(C), pages 1086-1097.
    10. Landfahrer, M. & Schluckner, C. & Prieler, R. & Gerhardter, H. & Zmek, T. & Klarner, J. & Hochenauer, C., 2019. "Development and application of a numerically efficient model describing a rotary hearth furnace using CFD," Energy, Elsevier, vol. 180(C), pages 79-89.
    11. Karvountzis-Kontakiotis, Apostolos & Ntziachristos, Leonidas, 2016. "Improvement of NO and CO predictions for a homogeneous combustion SI engine using a novel emissions model," Applied Energy, Elsevier, vol. 162(C), pages 172-182.
    12. Fu, Jianqin & Deng, Banglin & Liu, Xiaoqiang & Shu, Jun & Xu, Ying & Liu, Jingping, 2020. "The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle," Energy, Elsevier, vol. 211(C).
    13. Zhang, Kesong & Liang, Zheng & Wang, Jianxin & Wang, Zhiming, 2013. "Diesel diffusion flame simulation using reduced n-heptane oxidation mechanism," Applied Energy, Elsevier, vol. 105(C), pages 223-228.
    14. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    15. Donateo, Teresa & Tornese, Federica & Laforgia, Domenico, 2013. "Computer-aided conversion of an engine from diesel to methane," Applied Energy, Elsevier, vol. 108(C), pages 8-23.
    16. Abdulrahman Abdullah Bahashwan & Rosdiazli Bin Ibrahim & Madiah Binti Omar & Mochammad Faqih, 2022. "The Lean Blowout Prediction Techniques in Lean Premixed Gas Turbine: An Overview," Energies, MDPI, vol. 15(22), pages 1-21, November.
    17. Salvi, B.L. & Subramanian, K.A., 2015. "Experimental investigation and phenomenological model development of flame kernel growth rate in a gasoline fuelled spark ignition engine," Applied Energy, Elsevier, vol. 139(C), pages 93-103.
    18. Banglin Deng & Weijiao Yu & Lili Zhou & Chengqi Sun, 2023. "A Comparative Investigation of the Emissions of a Heavy-Duty Diesel Engine under World Harmonized Transient Cycle and Road Spectrum Cycle," Energies, MDPI, vol. 17(1), pages 1-18, December.
    19. Deng, Banglin & Li, Qing & Chen, Yangyang & Li, Meng & Liu, Aodong & Ran, Jiaqi & Xu, Ying & Liu, Xiaoqiang & Fu, Jianqin & Feng, Renhua, 2019. "The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions," Energy, Elsevier, vol. 169(C), pages 1202-1213.
    20. Irimescu, Adrian & Merola, Simona Silvia & Valentino, Gerardo, 2016. "Application of an entrainment turbulent combustion model with validation based on the distribution of chemical species in an optical spark ignition engine," Applied Energy, Elsevier, vol. 162(C), pages 908-923.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:537-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.