IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic55.html
   My bibliography  Save this article

Systematic multi-level optimization design and dynamic control of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles

Author

Listed:
  • Zhu, Xiaoyong
  • Fan, Deyang
  • Xiang, Zixuan
  • Quan, Li
  • Hua, Wei
  • Cheng, Ming

Abstract

Motors that convert electrical energy to mechanical energy, have been considered as one of the most crucial components of all-climatic electric vehicles (EVs). In order to realize high-quality energy conversion, motor optimization has attracted considerable attention in the research field of motors. In this paper, systematic multi-level optimization design and dynamic control strategy is proposed for a less-rare-earth hybrid permanent magnet (LRE-HPM) motor. In the proposed systematic optimization strategy, the design requirements of the motor design level and control level are considered comprehensively. In the motor design level, the comprehensive sensitivity analysis is adopted to stratify design parameters, and the response surface method and multi-objective genetic algorithm are implemented respectively. In the motor control level, the resonance compensation strategy is established to further suppress torque ripple and speed vibration. Finally, a prototype motor is built and tested. Both simulation and experimental results not only verify the effectiveness of the proposed systematic optimization and dynamic control strategy, but also offer a research orientation for realizing high-quality energy conversion of all-climatic EVs.

Suggested Citation

  • Zhu, Xiaoyong & Fan, Deyang & Xiang, Zixuan & Quan, Li & Hua, Wei & Cheng, Ming, 2019. "Systematic multi-level optimization design and dynamic control of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:55
    DOI: 10.1016/j.apenergy.2019.113549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Qingbo & Zhang, Chengming & Li, Liyi & Gerada, David & Zhang, Jiangpeng & Wang, Mingyi, 2017. "Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system," Applied Energy, Elsevier, vol. 204(C), pages 1317-1332.
    2. He, Hongwen & Guo, Xiaoguang, 2018. "Multi-objective optimization research on the start condition for a parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 227(C), pages 294-303.
    3. He, Hongwen & Zhou, Nana & Guo, Jinquan & Zhang, Zheng & Lu, Bing & Sun, Chao, 2018. "Tolerance analysis of electrified vehicles on the motor demagnetization fault: From an energy perspective," Applied Energy, Elsevier, vol. 227(C), pages 239-248.
    4. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2015. "A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs," Applied Energy, Elsevier, vol. 139(C), pages 260-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miaomiao Zeng & Peng Zhang & Yang Yang & Changjun Xie & Ying Shi, 2019. "SOC and SOH Joint Estimation of the Power Batteries Based on Fuzzy Unscented Kalman Filtering Algorithm," Energies, MDPI, vol. 12(16), pages 1-15, August.
    2. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Jiaxing Lei & Chaofan Wei & Hui Yang & Hao Zheng & Wenjia Wang & Shuang Feng, 2019. "Design Considerations of Switched Flux Memory Machine with Partitioned Stators," Energies, MDPI, vol. 12(20), pages 1-15, October.
    4. Wenye Wu & Qingzhang Chen & Xiaoyong Zhu & Fuzhou Zhao & Zixuan Xiang, 2020. "Electromagnetic–Mechanical Coupling Optimization of an IPM Synchronous Machine with Multi Flux Barriers," Energies, MDPI, vol. 13(7), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jun-Cheng & Wang, Fa-Hui & Wang, Ya-Xiong & Chen, Shi-An, 2023. "Analysis of real-time energy losses of electric vehicle caused by non-stationary road irregularity," Energy, Elsevier, vol. 282(C).
    2. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    4. Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
    5. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    6. Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
    7. Chen, Shi-An & Jiang, Xu-Dong & Yao, Ming & Jiang, Shun-Ming & Chen, Jinzhou & Wang, Ya-Xiong, 2020. "A dual vibration reduction structure-based self-powered active suspension system with PMSM-ball screw actuator via an improved H2/H∞ control," Energy, Elsevier, vol. 201(C).
    8. Bhattacharjee, Debraj & Ghosh, Tamal & Bhola, Prabha & Martinsen, Kristian & Dan, Pranab K., 2019. "Data-driven surrogate assisted evolutionary optimization of hybrid powertrain for improved fuel economy and performance," Energy, Elsevier, vol. 183(C), pages 235-248.
    9. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    10. Piotr Dukalski & Roman Krok, 2021. "Selected Aspects of Decreasing Weight of Motor Dedicated to Wheel Hub Assembly by Increasing Number of Magnetic Poles," Energies, MDPI, vol. 14(4), pages 1-27, February.
    11. Zhichao Zhao & Lu Li & Yang Ou & Yi Wang & Shaoyang Wang & Jing Yu & Renhua Feng, 2023. "A Comparative Study on the Energy Flow of Electric Vehicle Batteries among Different Environmental Temperatures," Energies, MDPI, vol. 16(14), pages 1-15, July.
    12. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    13. Carmen Raga & Antonio Lázaro & Andrés Barrado & Alberto Martín-Lozano & Isabel Quesada, 2019. "Step-by-Step Small-Signal Modeling and Control of a Light Hybrid Electric Vehicle Propulsion System," Energies, MDPI, vol. 12(21), pages 1-20, October.
    14. Guo, Peng & Li, Yongjian & Lin, Zhiwei & Li, Yating & Su, Peng, 2023. "Characterization and calculation of losses in soft magnetic composites for motors with SVPWM excitation," Applied Energy, Elsevier, vol. 349(C).
    15. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    16. Wei, Dong & He, Hongwen & Cao, Jianfei, 2020. "Hybrid electric vehicle electric motors for optimum energy efficiency: A computationally efficient design," Energy, Elsevier, vol. 203(C).
    17. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    18. Jiajun Liu & Huachao Dong & Tianxu Jin & Li Liu & Babak Manouchehrinia & Zuomin Dong, 2018. "Optimization of Hybrid Energy Storage Systems for Vehicles with Dynamic On-Off Power Loads Using a Nested Formulation," Energies, MDPI, vol. 11(10), pages 1-25, October.
    19. Lei, Fei & Du, Bin & Liu, Xin & Xie, Xiaoping & Chai, Tian, 2016. "Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle," Energy, Elsevier, vol. 113(C), pages 980-990.
    20. Becherif, M. & Ramadan, H.S. & Ayad, M.Y. & Hissel, D. & Desideri, U. & Antonelli, M., 2017. "Efficient start–up energy management via nonlinear control for eco–traction systems," Applied Energy, Elsevier, vol. 187(C), pages 899-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.