Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.07.139
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
- Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
- Atlam, Ozcan & Kolhe, Mohan, 2013. "Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system," Energy, Elsevier, vol. 57(C), pages 692-698.
- Walker, Paul D. & Roser, Holger M., 2015. "Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers," Applied Energy, Elsevier, vol. 146(C), pages 279-287.
- Li, Yunhua & Liu, Mingsheng & Lau, Josephine & Zhang, Bei, 2015. "A novel method to determine the motor efficiency under variable speed operations and partial load conditions," Applied Energy, Elsevier, vol. 144(C), pages 234-240.
- Zhang, Shuo & Xiong, Rui & Zhang, Chengning, 2015. "Pontryagin’s Minimum Principle-based power management of a dual-motor-driven electric bus," Applied Energy, Elsevier, vol. 159(C), pages 370-380.
- Sakthivel, V.P. & Subramanian, S., 2011. "On-site efficiency evaluation of three-phase induction motor based on particle swarm optimization," Energy, Elsevier, vol. 36(3), pages 1713-1720.
- Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
- Kortas, Imen & Sakly, Anis & Mimouni, Mohamed Faouzi, 2015. "Analytical solution of optimized energy consumption of Double Star Induction Motor operating in transient regime using a Hamilton–Jacobi–Bellman equation," Energy, Elsevier, vol. 89(C), pages 55-64.
- Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
- Rambaldi, Lorenzo & Bocci, Enrico & Orecchini, Fabio, 2011. "Preliminary experimental evaluation of a four wheel motors, batteries plus ultracapacitors and series hybrid powertrain," Applied Energy, Elsevier, vol. 88(2), pages 442-448, February.
- Hung, Yi-Hsuan & Wu, Chien-Hsun, 2015. "A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs," Applied Energy, Elsevier, vol. 139(C), pages 260-271.
- Sun, Li & Zhang, Nong, 2015. "Design, implementation and characterization of a novel bi-directional energy conversion system on DC motor drive using super-capacitors," Applied Energy, Elsevier, vol. 153(C), pages 101-111.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
- Lei, Fei & Gu, Ke & Du, Bin & Xie, Xiaoping, 2017. "Comprehensive global optimization of an implicit constrained multi-physics system for electric vehicles with in-wheel motors," Energy, Elsevier, vol. 139(C), pages 523-534.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lei, Fei & Gu, Ke & Du, Bin & Xie, Xiaoping, 2017. "Comprehensive global optimization of an implicit constrained multi-physics system for electric vehicles with in-wheel motors," Energy, Elsevier, vol. 139(C), pages 523-534.
- Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
- Burgos Payán, Manuel & Roldan Fernandez, Juan Manuel & Maza Ortega, Jose Maria & Riquelme Santos, Jesus Manuel, 2019. "Techno-economic optimal power rating of induction motors," Applied Energy, Elsevier, vol. 240(C), pages 1031-1048.
- Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
- Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
- Jiajun Liu & Huachao Dong & Tianxu Jin & Li Liu & Babak Manouchehrinia & Zuomin Dong, 2018. "Optimization of Hybrid Energy Storage Systems for Vehicles with Dynamic On-Off Power Loads Using a Nested Formulation," Energies, MDPI, vol. 11(10), pages 1-25, October.
- Singh, Gurmeet & Anil Kumar, T.Ch. & Naikan, V.N.A., 2019. "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 193-201.
- Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
- Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
- Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
- Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).
- Guo, Jingquan & Ma, Xinqiang & Ahmadpour, Ali, 2021. "Electrical–mechanical evaluation of the multi–cascaded induction motors under different conditions," Energy, Elsevier, vol. 229(C).
- Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
- Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Tribioli, Laura & Cozzolino, Raffaello & Chiappini, Daniele & Iora, Paolo, 2016. "Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing," Applied Energy, Elsevier, vol. 184(C), pages 140-154.
- El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
- Zhang, Shuo & Xiong, Rui & Zhang, Chengning & Sun, Fengchun, 2016. "An optimal structure selection and parameter design approach for a dual-motor-driven system used in an electric bus," Energy, Elsevier, vol. 96(C), pages 437-448.
- Liu, Hanwu & Lei, Yulong & Fu, Yao & Li, Xingzhong, 2022. "A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle," Energy, Elsevier, vol. 247(C).
- Chaofeng Pan & Yanyan Liang & Long Chen & Liao Chen, 2019. "Optimal Control for Hybrid Energy Storage Electric Vehicle to Achieve Energy Saving Using Dynamic Programming Approach," Energies, MDPI, vol. 12(4), pages 1-19, February.
- Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
More about this item
Keywords
Electric vehicle; Motor wheel; Multi-physics system; Global optimization; Implicit constraints;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:980-990. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.