IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7682-d591392.html
   My bibliography  Save this article

Development of Supercapacitor-Aided Hybrid Energy Storage System to Enhance Battery Life Cycle of Electric Vehicles

Author

Listed:
  • Min-Fu Hsieh

    (Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

  • Po-Hsun Chen

    (Department of Applied Science, R.O.C. Naval Academy, Kaohsiung 81345, Taiwan)

  • Fu-Sheng Pai

    (Department of Electrical Engineering, National University of Tainan, Tainan 70005, Taiwan)

  • Rui-Yang Weng

    (Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

Abstract

This paper presents a C-rate control method for a battery/supercapacitor (SC) hybrid energy storage system (HESS) to enhance the life cycle of the battery in electric vehicles (EVs). The proposed HESS provides satisfactory power for dynamic movements of EVs (e.g., acceleration or braking) while keeping the battery current within a secure level to prevent it from degradation. The configurations of conventional HESSs are often complex due to the two energy storages and their current/voltage sensing involved. Therefore, in this paper, a simple current-sensing scheme is utilized and the battery is directly treated as a controlled variable to help the battery output current remain stable for different load conditions. While the proposed circuit requires only one current feedback signal, neither the SC nor load current sensors are needed, and the circuit design is thus significantly simplified. Both simulation and experimental results validated the effectiveness of the proposed HESS operating in conjunction with the motor drive system. The proposed method aims at fully utilizing recycled energy and prolonging battery lifespan.

Suggested Citation

  • Min-Fu Hsieh & Po-Hsun Chen & Fu-Sheng Pai & Rui-Yang Weng, 2021. "Development of Supercapacitor-Aided Hybrid Energy Storage System to Enhance Battery Life Cycle of Electric Vehicles," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7682-:d:591392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuebing Han & Minggao Ouyang & Languang Lu & Jianqiu Li, 2014. "Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles," Energies, MDPI, vol. 7(8), pages 1-15, July.
    2. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2015. "A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs," Applied Energy, Elsevier, vol. 139(C), pages 260-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P., Naresh & N., Sai Vinay Kishore & V., Seshadri Sravan Kumar, 2024. "A new configuration for enhanced integration of a battery–ultracapacitor system," Renewable Energy, Elsevier, vol. 229(C).
    2. Eiman ElGhanam & Hazem Sharf & Mohamed S. Hassan & Ahmed Osman, 2023. "Performance Evaluation of Hybrid Battery–Supercapacitor-Based Energy Storage Systems for Urban-Driven Electric Vehicles," Sustainability, MDPI, vol. 15(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    2. Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
    3. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    4. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    5. Liu, Sijia & Winter, Michaela & Lewerenz, Meinert & Becker, Jan & Sauer, Dirk Uwe & Ma, Zeyu & Jiang, Jiuchun, 2019. "Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature," Energy, Elsevier, vol. 173(C), pages 1041-1053.
    6. Bhattacharjee, Debraj & Ghosh, Tamal & Bhola, Prabha & Martinsen, Kristian & Dan, Pranab K., 2019. "Data-driven surrogate assisted evolutionary optimization of hybrid powertrain for improved fuel economy and performance," Energy, Elsevier, vol. 183(C), pages 235-248.
    7. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    8. Wen, Jianping & Chen, Xing & Li, Xianghe & Li, Yikun, 2022. "SOH prediction of lithium battery based on IC curve feature and BP neural network," Energy, Elsevier, vol. 261(PA).
    9. Yashraj Tripathy & Andrew McGordon & Chee Tong John Low, 2018. "A New Consideration for Validating Battery Performance at Low Ambient Temperatures," Energies, MDPI, vol. 11(9), pages 1-16, September.
    10. Philipp Glücker & Klaus Kivekäs & Jari Vepsäläinen & Panagiotis Mouratidis & Maximilian Schneider & Stephan Rinderknecht & Kari Tammi, 2021. "Prolongation of Battery Lifetime for Electric Buses through Flywheel Integration," Energies, MDPI, vol. 14(4), pages 1-19, February.
    11. Zhu, Xiaoyong & Fan, Deyang & Xiang, Zixuan & Quan, Li & Hua, Wei & Cheng, Ming, 2019. "Systematic multi-level optimization design and dynamic control of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Wei, Dong & He, Hongwen & Cao, Jianfei, 2020. "Hybrid electric vehicle electric motors for optimum energy efficiency: A computationally efficient design," Energy, Elsevier, vol. 203(C).
    13. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    14. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Chu Wang & Zehui Liu & Yaohong Sun & Yinghui Gao & Ping Yan, 2021. "Aging Behavior of Lithium Titanate Battery under High-Rate Discharging Cycle," Energies, MDPI, vol. 14(17), pages 1-14, September.
    16. Wang, Jun-Cheng & Wang, Fa-Hui & Wang, Ya-Xiong & Chen, Shi-An, 2023. "Analysis of real-time energy losses of electric vehicle caused by non-stationary road irregularity," Energy, Elsevier, vol. 282(C).
    17. Susanne Rothgang & Matthias Rogge & Jan Becker & Dirk Uwe Sauer, 2015. "Battery Design for Successful Electrification in Public Transport," Energies, MDPI, vol. 8(7), pages 1-23, June.
    18. Jiajun Liu & Huachao Dong & Tianxu Jin & Li Liu & Babak Manouchehrinia & Zuomin Dong, 2018. "Optimization of Hybrid Energy Storage Systems for Vehicles with Dynamic On-Off Power Loads Using a Nested Formulation," Energies, MDPI, vol. 11(10), pages 1-25, October.
    19. Chu Wang & Yaohong Sun & Yinghui Gao & Ping Yan, 2023. "The Incremental Capacity Curves and Frequency Response Characteristic Evolution of Lithium Titanate Battery during Ultra-High-Rate Discharging Cycles," Energies, MDPI, vol. 16(8), pages 1-14, April.
    20. Rogers, Daniel J. & Aslett, Louis J.M. & Troffaes, Matthias C.M., 2021. "Modelling of modular battery systems under cell capacity variation and degradation," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7682-:d:591392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.