IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i10p3092-3102.html
   My bibliography  Save this article

Modeling and optimization of HVAC energy consumption

Author

Listed:
  • Kusiak, Andrew
  • Li, Mingyang
  • Tang, Fan

Abstract

A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%.

Suggested Citation

  • Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:10:p:3092-3102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00115-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    2. Kusiak, Andrew & Li, Mingyang, 2010. "Cooling output optimization of an air handling unit," Applied Energy, Elsevier, vol. 87(3), pages 901-909, March.
    3. Du, Zhimin & Jin, Xinqiao & Yang, Yunyu, 2009. "Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network," Applied Energy, Elsevier, vol. 86(9), pages 1624-1631, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xiupeng & Kusiak, Andrew & Li, Mingyang & Tang, Fan & Zeng, Yaohui, 2015. "Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance," Energy, Elsevier, vol. 83(C), pages 294-306.
    2. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    3. Kusiak, Andrew & Li, Mingyang & Zheng, Haiyang, 2010. "Virtual models of indoor-air-quality sensors," Applied Energy, Elsevier, vol. 87(6), pages 2087-2094, June.
    4. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    5. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    6. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    7. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    8. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    9. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    10. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    11. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    12. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    13. H Seol & H Lee & S Kim & Y Park, 2008. "The impact of information technology on organizational efficiency in public services: a DEA-based DT approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 231-238, February.
    14. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    15. Todor Krastevich, 2013. "Using Predictive Modeling to Improve Direct Marketing Performance," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 3, pages 25-55.
    16. Adrien Ehrhardt & Christophe Biernacki & Vincent Vandewalle & Philippe Heinrich, 2019. "Feature quantization for parsimonious and interpretable predictive models," Papers 1903.08920, arXiv.org.
    17. Onur Doğan & Hakan Aşan & Ejder Ayç, 2015. "Use Of Data Mining Techniques In Advance Decision Making Processes In A Local Firm," European Journal of Business and Economics, Central Bohemia University, vol. 10(2), pages 6821:10-682, January.
    18. Jae-Dong Kim & Tae-Hyeong Kim & Sung Won Han, 2023. "Demand Forecasting of Spare Parts Using Artificial Intelligence: A Case Study of K-X Tanks," Mathematics, MDPI, vol. 11(3), pages 1-10, January.
    19. Agapito, Dora & Mendes, Julio & Valle, Patricia, 2011. "The Sea as a Connection between Residents and Tourists in Coastal Destinations: A Case in Algarve," Spatial and Organizational Dynamics Discussion Papers 2011-13, CIEO-Research Centre for Spatial and Organizational Dynamics, University of Algarve.
    20. Francisco Javier Rondán-Cataluña & Patricio E. Ramírez-Correa & Jorge Arenas-Gaitán & Muriel Ramírez-Santana & Elizabeth E. Grandón & Jorge Alfaro-Pérez, 2020. "Social Network Communications in Chilean Older Adults," IJERPH, MDPI, vol. 17(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:10:p:3092-3102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.