IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip1p1365-1377.html
   My bibliography  Save this article

A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings

Author

Listed:
  • Miller, Clayton
  • Nagy, Zoltán
  • Schlueter, Arno

Abstract

Measured and simulated data sources from the built environment are increasing rapidly. It is becoming normal to analyze data from hundreds, or even thousands of buildings at once. Mechanistic, manual analysis of such data sets is time-consuming and not realistic using conventional techniques. Thus, a significant body of literature has been generated using unsupervised statistical learning techniques designed to uncover structure and information quickly with fewer input parameters or metadata about the buildings collected. Further, visual analytics techniques are developed as aids in this process for a human analyst to utilize and interpret the results. This paper reviews publications that include the use of unsupervised machine learning techniques as applied to non-residential building performance control and analysis. The categories of techniques covered include clustering, novelty detection, motif and discord detection, rule extraction, and visual analytics. The publications apply these technologies in the domains of smart meters, portfolio analysis, operations and controls optimization, and anomaly detection. A discussion is included of key challenges resulting from this review, such as the need for better collaboration between several, disparate research communities and the lack of open, benchmarking data sets. Opportunities for improvement are presented including methods of reproducible research and suggestions for cross-disciplinary cooperation.

Suggested Citation

  • Miller, Clayton & Nagy, Zoltán & Schlueter, Arno, 2018. "A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1365-1377.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:1365-1377
    DOI: 10.1016/j.rser.2017.05.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Kai-le & Yang, Shan-lin & Shen, Chao, 2013. "A review of electric load classification in smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 103-110.
    2. Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
    3. Räsänen, Teemu & Ruuskanen, Juhani & Kolehmainen, Mikko, 2008. "Reducing energy consumption by using self-organizing maps to create more personalized electricity use information," Applied Energy, Elsevier, vol. 85(9), pages 830-840, September.
    4. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    5. Jang, Dongsik & Eom, Jiyong & Jae Park, Min & Jeung Rho, Jae, 2016. "Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers," Energy Policy, Elsevier, vol. 88(C), pages 11-26.
    6. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    7. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    8. Gaitani, N. & Lehmann, C. & Santamouris, M. & Mihalakakou, G. & Patargias, P., 2010. "Using principal component and cluster analysis in the heating evaluation of the school building sector," Applied Energy, Elsevier, vol. 87(6), pages 2079-2086, June.
    9. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    10. Benoit Lange & William Puech & Nancy Rodriguez, 2012. "Energy Consumption Improvement Through a Visualization Software," Chapters, in: Zoran Morvaj (ed.), Energy Efficiency - A Bridge to Low Carbon Economy, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    2. Vangelis Marinakis, 2020. "Big Data for Energy Management and Energy-Efficient Buildings," Energies, MDPI, vol. 13(7), pages 1-18, March.
    3. Yunbo Yang & Rongling Li & Tao Huang, 2020. "Smart Meter Data Analysis of a Building Cluster for Heating Load Profile Quantification and Peak Load Shifting," Energies, MDPI, vol. 13(17), pages 1-20, August.
    4. Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Fan, Cheng & Xiao, Fu & Song, Mengjie & Wang, Jiayuan, 2019. "A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Huijie Zhang & Ke Ren & Yiming Lin & Dezhan Qu & Zhenxin Li, 2019. "AirInsight: Visual Exploration and Interpretation of Latent Patterns and Anomalies in Air Quality Data," Sustainability, MDPI, vol. 11(10), pages 1-28, May.
    7. Reindl, K. & Palm, J., 2021. "Installing PV: Barriers and enablers experienced by non-residential property owners," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Fan, Cheng & Sun, Yongjun & Shan, Kui & Xiao, Fu & Wang, Jiayuan, 2018. "Discovering gradual patterns in building operations for improving building energy efficiency," Applied Energy, Elsevier, vol. 224(C), pages 116-123.
    9. Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
    10. Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.
    11. Li, Wenzhuo & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Cha, Seung Hyun & Wang, Shengwei, 2020. "A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real-time big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    13. Park, June Young & Yang, Xiya & Miller, Clayton & Arjunan, Pandarasamy & Nagy, Zoltan, 2019. "Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset," Applied Energy, Elsevier, vol. 236(C), pages 1280-1295.
    14. Xiao, Tong & Xu, Peng & He, Ruikai & Sha, Huajing, 2022. "Status quo and opportunities for building energy prediction in limited data Context—Overview from a competition," Applied Energy, Elsevier, vol. 305(C).
    15. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    16. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    17. Westermann, Paul & Deb, Chirag & Schlueter, Arno & Evins, Ralph, 2020. "Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    3. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    4. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    5. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    6. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    7. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    8. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    9. Mitra, Somalee & Chakraborty, Basab & Mitra, Pabitra, 2024. "Smart meter data analytics applications for secure, reliable and robust grid system: Survey and future directions," Energy, Elsevier, vol. 289(C).
    10. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
    11. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    12. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    13. Chen, Wen & Zhou, Kaile & Yang, Shanlin & Wu, Cheng, 2017. "Data quality of electricity consumption data in a smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 98-105.
    14. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    15. Jimyung Kang & Jee-Hyong Lee, 2015. "Electricity Customer Clustering Following Experts’ Principle for Demand Response Applications," Energies, MDPI, vol. 8(10), pages 1-24, October.
    16. Nora Munguia & Javier Esquer & Hector Guzman & Janim Herrera & Jesus Gutierrez-Ruelas & Luis Velazquez, 2020. "Energy Efficiency in Public Buildings: A Step toward the UN 2030 Agenda for Sustainable Development," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    17. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2017. "k-means based load estimation of domestic smart meter measurements," Applied Energy, Elsevier, vol. 194(C), pages 333-342.
    18. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
    19. Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
    20. Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:1365-1377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.