IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v247y2019icp630-642.html
   My bibliography  Save this article

Theoretical and experimental study of gas-phase corrosion attack of Fe under simulated municipal solid waste combustion: Influence of KCl, SO2, HCl, and H2O vapour

Author

Listed:
  • Chen, Guanyi
  • Wenga, Terrence
  • Ma, Wenchao
  • Lin, Fawei

Abstract

Combustion of municipal solid waste (MSW) in waste-to-energy plants have an advantage of energy recovery. However, corrosion of super-heaters induced by KCl, H2O, and S in MSW is the major problem limiting the efficient utilisation of MSW. Corrosion reactions of metals are not well understood at molecular/atomic levels, regarding how they evolve. This situation emphasizes the need to understand the reaction pathways and their reaction rates in order to identify operating conditions that reduces the corrosion rates. In this study, a novel kinetic model for the gas-surface reactions of KCl, S, and H2O with Fe was developed. The rate constants for the elementary reactions were estimated based on density functional theory and conventional transition state theory computations. Fe-clusters (Fen, n = 2–4) were used in estimating the kinetic constants of the surface reactions. Reaction model was used to predict the corrosion behaviour of Fe in simulated flue-gas of combustion of MSW at 500 °C and 4 bars. A perfectly stirred reactor code of chemkin-PRO was employed for the predictions. Due to the novel nature of the mechanism, independent experimental results from the literature and experimental results from well-controlled conditions at 500 °C and 4 bars for 50 h were used to validate model predictions. Comparison of model predictions and all experimental results showed good agreement. The concentration of KCl accelerated the corrosion of Fe by a parabolic behaviour while SO2 between 300–500 ppm showed the lowest mass loss. Water vapour of ∼10 vol% was the critical point at which above corrosion rate was accelerated.

Suggested Citation

  • Chen, Guanyi & Wenga, Terrence & Ma, Wenchao & Lin, Fawei, 2019. "Theoretical and experimental study of gas-phase corrosion attack of Fe under simulated municipal solid waste combustion: Influence of KCl, SO2, HCl, and H2O vapour," Applied Energy, Elsevier, vol. 247(C), pages 630-642.
  • Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:630-642
    DOI: 10.1016/j.apenergy.2019.04.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930707X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    2. Sandberg, Jan & Karlsson, Christer & Fdhila, Rebei Bel, 2011. "A 7Â year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler," Applied Energy, Elsevier, vol. 88(1), pages 99-110, January.
    3. M. S. Dresselhaus & I. L. Thomas, 2001. "Alternative energy technologies," Nature, Nature, vol. 414(6861), pages 332-337, November.
    4. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    5. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Jun & Jeswani, Harish Kumar & Nzihou, Ange & Azapagic, Adisa, 2020. "The environmental cost of recovering energy from municipal solid waste," Applied Energy, Elsevier, vol. 267(C).
    2. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    3. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    7. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    8. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    9. Joanna Wnorowska & Waldemar Gądek & Sylwester Kalisz, 2020. "Statistical Model for Prediction of Ash Fusion Temperatures from Additive Doped Biomass," Energies, MDPI, vol. 13(24), pages 1-21, December.
    10. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    11. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    12. Woong Hee Lee & Young-Jin Ko & Jung Hwan Kim & Chang Hyuck Choi & Keun Hwa Chae & Hansung Kim & Yun Jeong Hwang & Byoung Koun Min & Peter Strasser & Hyung-Suk Oh, 2021. "High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Jacqueline Noga & Gregor Wolbring, 2014. "The Oil and Gas Discourse from the Perspective of the Canadian and Albertan Governments, Non-Governmental Organizations and the Oil and Gas Industry," Energies, MDPI, vol. 7(1), pages 1-20, January.
    14. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    16. Kudzai Mugadza & Annegret Stark & Patrick G. Ndungu & Vincent O. Nyamori, 2021. "Effects of Ionic Liquid and Biomass Sources on Carbon Nanotube Physical and Electrochemical Properties," Sustainability, MDPI, vol. 13(5), pages 1-12, March.
    17. Roy, Debmalya & Shastri, Babita & Imamuddin, Md. & Mukhopadhyay, K. & Rao, K.U. Bhasker, 2011. "Nanostructured carbon and polymer materials – Synthesis and their application in energy conversion devices," Renewable Energy, Elsevier, vol. 36(3), pages 1014-1018.
    18. Tang, Jia & Yang, Mu & Yu, Fang & Chen, Xingyu & Tan, Li & Wang, Ge, 2017. "1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage," Applied Energy, Elsevier, vol. 187(C), pages 514-522.
    19. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:630-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.