IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13293-d943737.html
   My bibliography  Save this article

Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria

Author

Listed:
  • Oluwaseun Nubi

    (Centre for Environment and Sustainability, University of Surrey, Guildford GU2 7XH, UK)

  • Stephen Morse

    (Centre for Environment and Sustainability, University of Surrey, Guildford GU2 7XH, UK)

  • Richard J. Murphy

    (Centre for Environment and Sustainability, University of Surrey, Guildford GU2 7XH, UK)

Abstract

Waste management and electricity supply have always been among the main challenges faced by developing countries. So far, the use of waste to energy (WtE) is one strategy that could simultaneously address these two challenges. However, the use of such technologies requires detailed studies to ensure their sustainability. In this paper, the potential of WtE in two cities in Nigeria (Abuja and Lagos) using anaerobic digestion (AD), incineration, gasification and landfill gas to energy (LFGTE), is presented with the aim of evaluating their economic viability using life cycle costing (LCC) as an analytical tool. This economic feasibility analysis includes LCC, levelised cost of electricity (LCOE), net present value (NPV), internal rate of return (IRR) and payback period. A sensitivity analysis was conducted to investigate the influence of several parameters on the economic viability of the selected technologies for the two cities. The economic assessment revealed that all the WtE systems were feasible and viable in both cities except for LFGTE in Abuja where the NPV was negative (−USD 105.42/t), and the IRR was 4.17%. Overall, incineration for both cities proved to be the most favourable economic option based on its positive LCC (Lagos USD 214.1/t Abuja USD 232.76/t), lowest LCOE (Lagos USD 0.046/t Abuja USD 0.062/t), lowest payback period (Lagos 1.6 years Abuja 2.2 years) and the highest IRR (Lagos 62.8% Abuja 45.3%). The results of the sensitivity analysis also indicated that variation in parameters such as the capital cost and discount rate have significant effects on the LCC. This paper provides information for potential investors and policy makers to enhance optimal investment in WtE technologies in Nigeria.

Suggested Citation

  • Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13293-:d:943737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Safar, Korai Muhammad & Bux, Mahar Rasool & Faria, Uqaili & Pervez, Shaikh, 2021. "Integrated model of municipal solid waste management for energy recovery in Pakistan," Energy, Elsevier, vol. 219(C).
    2. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    3. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2021. "A Prospective Social Life Cycle Assessment (sLCA) of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    4. Ismaila Rimi Abubakar, 2017. "Access to Sanitation Facilities among Nigerian Households: Determinants and Sustainability Implications," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    5. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    6. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    7. Scarlat, N. & Motola, V. & Dallemand, J.F. & Monforti-Ferrario, F. & Mofor, Linus, 2015. "Evaluation of energy potential of Municipal Solid Waste from African urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1269-1286.
    8. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    9. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
    10. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zakariya Kaneesamkandi & Abdul Sayeed, 2023. "Evaluation of Multi-Utility Models with Municipal Solid Waste Combustion as the Primary Source under Specific Geographical and Operating Conditions," Energies, MDPI, vol. 16(15), pages 1-17, July.
    2. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Life Cycle Sustainability Assessment of Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective Study," Energies, MDPI, vol. 15(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dek Vimean Pheakdey & Nguyen Van Quan & Tran Dang Xuan, 2023. "Economic and Environmental Benefits of Energy Recovery from Municipal Solid Waste in Phnom Penh Municipality, Cambodia," Energies, MDPI, vol. 16(7), pages 1-19, April.
    2. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    3. Ihsanullah Sohoo & Marco Ritzkowski & Zubair Ahmed Sohu & Senem Önen Cinar & Zhi Kai Chong & Kerstin Kuchta, 2021. "Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan," Energies, MDPI, vol. 14(9), pages 1-17, April.
    4. Antonio Barragán-Escandón & Jonathan Miguel Olmedo Ruiz & Jonnathan David Curillo Tigre & Esteban F. Zalamea-León, 2020. "Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    5. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    6. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).
    7. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2021. "A Prospective Social Life Cycle Assessment (sLCA) of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    8. Alao, M.A. & Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Popoola, O.M., 2020. "Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria," Energy, Elsevier, vol. 201(C).
    9. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Life Cycle Sustainability Assessment of Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective Study," Energies, MDPI, vol. 15(23), pages 1-16, December.
    10. Cudjoe, Dan & Han, Myat Su & Chen, Weiming, 2021. "Power generation from municipal solid waste landfilled in the Beijing-Tianjin-Hebei region," Energy, Elsevier, vol. 217(C).
    11. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    12. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    13. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    14. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    15. Silva, Leo Jaymee de Vilas Boas da & Santos, Ivan Felipe Silva dos & Mensah, Johnson Herlich Roslee & Gonçalves, Andriani Tavares Tenório & Barros, Regina Mambeli, 2020. "Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential," Renewable Energy, Elsevier, vol. 149(C), pages 1386-1394.
    16. Donald Ukpanyang & Julio Terrados-Cepeda & Manuel Jesus Hermoso-Orzaez, 2022. "Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria," Energies, MDPI, vol. 15(10), pages 1-26, May.
    17. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    18. Cudjoe, Dan & Nketiah, Emmanuel & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Zhu, Bangzhu, 2021. "Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi," Energy, Elsevier, vol. 226(C).
    19. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13293-:d:943737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.