IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222006107.html
   My bibliography  Save this article

Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis

Author

Listed:
  • Cudjoe, Dan
  • Wang, Hong
  • zhu, Bangzhu

Abstract

The utilization of single-use face masks as the standard PPE to minimize the spread of the COVID-19 pandemic has resulted in increased facemask waste. Improper management of the increased facemask waste has a consequential environmental impact. This requires swift actions to invest and implement innovative technologies to manage single-use facemask waste. Thermochemical treatment of disposable face masks could minimize COVID-19 plastic waste and produce value-added products. The present study evaluates the power generation potential and environmental impact of treating estimated daily single-use facemask waste in Africa and Asia via incineration. The environmental assessment was expressed as global warming potential and acidification potential. The formulation of the model equations method was used to estimate the power generation potential. The IPCC guidelines for national greenhouse gas inventory methodology and EPA “compilation of air pollutant emissions factors” (AP-42) were used to compute greenhouse and acid gases. The key findings show that the daily single-use facemask waste produced in Asia was 19.12 million kg/day, generating 32.65 million kWh/day of electricity. In Africa, 3.53 million kg/day of single-use facemask waste was produced, generating 6.03 million kWh/day of power. The results also show Asia's total global warming potential was 787,097.6 kt CO2eq/day, and 145,687.7 kt CO2eq/day was recorded in Africa. Besides, the total daily acidification potential of the incineration process in Asia was 7,078,904 kg SO2eq/day, while that in Africa was 1,308,362 kg SO2eq/day. This study will provide scientific guidance for environmental sustainability for treating single-use facemask waste via incineration technology for power generation.

Suggested Citation

  • Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006107
    DOI: 10.1016/j.energy.2022.123707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hilkiah Igoni, A. & Ayotamuno, M.J. & Eze, C.L. & Ogaji, S.O.T. & Probert, S.D., 2008. "Designs of anaerobic digesters for producing biogas from municipal solid-waste," Applied Energy, Elsevier, vol. 85(6), pages 430-438, June.
    2. Julio Torales & Marcelo O’Higgins & João Mauricio Castaldelli-Maia & Antonio Ventriglio, 2020. "The outbreak of COVID-19 coronavirus and its impact on global mental health," International Journal of Social Psychiatry, , vol. 66(4), pages 317-320, June.
    3. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    4. Park, Chanyeong & Choi, Heeyoung & Andrew Lin, Kun-Yi & Kwon, Eilhann E. & Lee, Jechan, 2021. "COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste," Energy, Elsevier, vol. 230(C).
    5. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
    6. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Guochang & Meng, Aoxiang & Wang, Qingling & Zhou, Huixin & Tian, Lixin, 2024. "Analysis of the evolution path of new energy system under polymorphic uncertainty—A case study of China," Energy, Elsevier, vol. 300(C).
    2. Rahaf Ajaj & Suzan Shahin & Haruna Moda & Shafeeq Ahmed Syed Ali, 2023. "Knowledge, Attitude, and Practices of Face Mask Use among University Students during the COVID-19 Pandemic: A Cross-Sectional Study," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    3. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2023. "Can green tax policy promote China's energy transformation?— A nonlinear analysis from production and consumption perspectives," Energy, Elsevier, vol. 269(C).
    4. Dan Cudjoe, 2023. "Energy-economics and environmental prospects of integrated waste-to-energy projects in the Beijing-Tianjin-Hebei region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12597-12628, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    2. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    3. Alao, M.A. & Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Popoola, O.M., 2020. "Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria," Energy, Elsevier, vol. 201(C).
    4. Dek Vimean Pheakdey & Nguyen Van Quan & Tran Dang Xuan, 2023. "Economic and Environmental Benefits of Energy Recovery from Municipal Solid Waste in Phnom Penh Municipality, Cambodia," Energies, MDPI, vol. 16(7), pages 1-19, April.
    5. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    6. Cudjoe, Dan & Nketiah, Emmanuel & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Zhu, Bangzhu, 2021. "Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi," Energy, Elsevier, vol. 226(C).
    7. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).
    8. Bingchun Liu & Ningbo Zhang & Lingli Wang & Xinming Zhang, 2022. "Electricity Generation Forecast of Shanghai Municipal Solid Waste Based on Bidirectional Long Short-Term Memory Model," IJERPH, MDPI, vol. 19(11), pages 1-16, May.
    9. Xu, Jiuping & Huang, Yidan & Shi, Yi & Li, Ruolan, 2022. "Reverse supply chain management approach for municipal solid waste with waste sorting subsidy policy," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    10. Antonio Barragán-Escandón & Jonathan Miguel Olmedo Ruiz & Jonnathan David Curillo Tigre & Esteban F. Zalamea-León, 2020. "Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    11. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2021. "A Prospective Social Life Cycle Assessment (sLCA) of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    12. Cudjoe, Dan & Han, Myat Su & Chen, Weiming, 2021. "Power generation from municipal solid waste landfilled in the Beijing-Tianjin-Hebei region," Energy, Elsevier, vol. 217(C).
    13. Alao, Moshood Akanni & Popoola, Olawale M. & Ayodele, Temitope Rapheal, 2021. "Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa," Renewable Energy, Elsevier, vol. 178(C), pages 162-183.
    14. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    15. Clemens Koestner & Viktoria Eggert & Theresa Dicks & Kristin Kalo & Carolina Zähme & Pavel Dietz & Stephan Letzel & Till Beutel, 2022. "Psychological Burdens among Teachers in Germany during the SARS-CoV-2 Pandemic—Subgroup Analysis from a Nationwide Cross-Sectional Online Survey," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    16. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    17. Francesco Demaria & Stefano Vicari, 2023. "Adolescent Distress: Is There a Vaccine? Social and Cultural Considerations during the COVID-19 Pandemic," IJERPH, MDPI, vol. 20(3), pages 1-11, January.
    18. Qingyuan Luo & Peng Zhang & Yijia Liu & Xiujie Ma & George Jennings, 2022. "Intervention of Physical Activity for University Students with Anxiety and Depression during the COVID-19 Pandemic Prevention and Control Period: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    19. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    20. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.