IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v246y2019icp24-37.html
   My bibliography  Save this article

Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor

Author

Listed:
  • Liu, Yangxu
  • Zhou, Wei
  • Lin, Yu
  • Chen, Lu
  • Chu, Xuyang
  • Zheng, Tianqing
  • Wan, Shaolong
  • Lin, Jingdong

Abstract

Methanol steam reforming microreactor is regarded as one of the effective approaches for online hydrogen source for fuel cells and the catalyst support is one of the most important component of microreactors. However, there is great room to improve the performance of microreactor by optimizing the structure of catalyst support. In this study, copper foams with different types of hole arrays were used as catalyst supports for constructing a new type of cylindrical laminated methanol steam reforming microreactor for hydrogen production. A laser processing method was used to fabricate the copper foams with hole arrays and a two-layer impregnation method was used to load the Cu/Zn/Al/Zr catalysts. The sphere-cut tetrakaidecahedrons model of copper foam was established and macroscopic numerical analysis were used to analyze the reactants distribution in copper foams. The optimal distribution of hole arrays of the copper foam was obtained by investigating the reaction characteristics under different flow rates of the reactant, reaction temperatures, and loading amounts of catalyst. The experimental results show that the microreactor for hydrogen production using copper foam with ordered hole arrays shows the higher methanol conversion and hydrogen flow rate comparing the ones without hole array. Because of improvement of the radial distribution uniformity and increase of the axial flow rates of the reactants, the best reaction performance of microreactor for hydrogen production is obtained when the copper foam with the configuration in which the hole size decreases along the radial and axial direction.

Suggested Citation

  • Liu, Yangxu & Zhou, Wei & Lin, Yu & Chen, Lu & Chu, Xuyang & Zheng, Tianqing & Wan, Shaolong & Lin, Jingdong, 2019. "Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor," Applied Energy, Elsevier, vol. 246(C), pages 24-37.
  • Handle: RePEc:eee:appene:v:246:y:2019:i:c:p:24-37
    DOI: 10.1016/j.apenergy.2019.03.199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919306154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Jinshu & Ke, Yuzhi & Kong, Guoguo & Tan, Mingwu & Wang, Yong & Lin, Jingdong & Zhou, Wei & Wan, Shaolong, 2017. "A novel structured PdZnAl/Cu fiber catalyst for methanol steam reforming in microreactor," Renewable Energy, Elsevier, vol. 113(C), pages 30-42.
    2. Perng, Shiang-Wuu & Horng, Rong-Fang & Wu, Horng-Wen, 2017. "Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis," Applied Energy, Elsevier, vol. 206(C), pages 312-328.
    3. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    4. Chein, Rei-Yu & Chen, Yen-Cho & Chang, Che-Ming & Chung, J.N., 2013. "Experimental study on the performance of hydrogen production from miniature methanol–steam reformer integrated with Swiss-roll type combustor for PEMFC," Applied Energy, Elsevier, vol. 105(C), pages 86-98.
    5. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    6. Zeng, Dehuai & Pan, Minqiang & Wang, Liming & Tang, Yong, 2012. "Fabrication and characteristics of cube-post microreactors for methanol steam reforming," Applied Energy, Elsevier, vol. 91(1), pages 208-213.
    7. Elmer, Theo & Worall, Mark & Wu, Shenyi & Riffat, Saffa B., 2015. "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 913-931.
    8. Pan, Minqiang & Wu, Qiuyu & Jiang, Lianbo & Zeng, Dehuai, 2015. "Effect of microchannel structure on the reaction performance of methanol steam reforming," Applied Energy, Elsevier, vol. 154(C), pages 416-427.
    9. Djilali, N., 2007. "Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities," Energy, Elsevier, vol. 32(4), pages 269-280.
    10. Wang, Qing-Hui & Yang, Song & Zhou, Wei & Li, Jing-Rong & Xu, Zhi-Jia & Ke, Yu-Zhi & Yu, Wei & Hu, Guang-Hua, 2018. "Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution," Applied Energy, Elsevier, vol. 216(C), pages 243-261.
    11. Wang, Guoqiang & Wang, Feng & Li, Longjian & Zhang, Guofu, 2013. "Experiment of catalyst activity distribution effect on methanol steam reforming performance in the packed bed plate-type reactor," Energy, Elsevier, vol. 51(C), pages 267-272.
    12. Yang, Xiaohu & Feng, Shangsheng & Zhang, Qunli & Chai, Yue & Jin, Liwen & Lu, Tian Jian, 2017. "The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage," Applied Energy, Elsevier, vol. 194(C), pages 508-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    2. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    3. Mohammed Abbas, Akhtar Hasnain & Cheralathan, Kanakkampalayam Krishnan & Porpatham, Ekambaram & Arumugam, Senthil Kumar, 2024. "Hydrogen generation using methanol steam reforming – catalysts, reactors, and thermo-chemical recuperation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qing-Hui & Yang, Song & Zhou, Wei & Li, Jing-Rong & Xu, Zhi-Jia & Ke, Yu-Zhi & Yu, Wei & Hu, Guang-Hua, 2018. "Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution," Applied Energy, Elsevier, vol. 216(C), pages 243-261.
    2. Perng, Shiang-Wuu & Wu, Horng-Wen, 2022. "Influence of inlet-nozzle and outlet-diffuser mounted in the plate-shape reactor on PEMFC net power output and methanol steam reforming performance," Applied Energy, Elsevier, vol. 323(C).
    3. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    4. Cheng, Chin-Hsiang & Huang, Yu-Xian & King, Shun-Chih & Lee, Chun-I & Leu, Chih-Hsing, 2014. "CFD (computational fluid dynamics)-based optimal design of a micro-reformer by integrating computational a fluid dynamics code using a simplified conjugate-gradient method," Energy, Elsevier, vol. 70(C), pages 355-365.
    5. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    6. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    7. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    8. Mohammed Abbas, Akhtar Hasnain & Cheralathan, Kanakkampalayam Krishnan & Porpatham, Ekambaram & Arumugam, Senthil Kumar, 2024. "Hydrogen generation using methanol steam reforming – catalysts, reactors, and thermo-chemical recuperation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    11. Mitja Mori & Rok Stropnik & Mihael Sekavčnik & Andrej Lotrič, 2021. "Criticality and Life-Cycle Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    12. Fernandes, Marina Domingues & Bistritzki, Victor & Domingues, Rosana Zacarias & Matencio, Tulio & Rapini, Márcia & Sinisterra, Rubén Dario, 2020. "Solid oxide fuel cell technology paths: National innovation system contributions from Japan and the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    14. Shu, Jun & Fu, Jianqin & Ren, Chengqin & Liu, Jingping & Wang, Shuqian & Feng, Sha, 2020. "Numerical investigation on flow and heat transfer processes of novel methanol cracking device for internal combustion engine exhaust heat recovery," Energy, Elsevier, vol. 195(C).
    15. Kim, Taegyu & Jo, Sungkwon & Song, Young-Hoon & Lee, Dae Hoon, 2014. "Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges," Applied Energy, Elsevier, vol. 113(C), pages 1692-1699.
    16. Perng, Shiang-Wuu & Wu, Horng-Wen, 2023. "Enhancement of proton exchange membrane fuel cell net electric power and methanol-reforming performance by vein channel carved into the reactor plate," Energy, Elsevier, vol. 281(C).
    17. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    18. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    19. Fajín, José L.C. & Cordeiro, M. Natália D.S., 2024. "Renewable hydrogen production from biomass derivatives or water on trimetallic based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:246:y:2019:i:c:p:24-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.