IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp30-42.html
   My bibliography  Save this article

A novel structured PdZnAl/Cu fiber catalyst for methanol steam reforming in microreactor

Author

Listed:
  • Tian, Jinshu
  • Ke, Yuzhi
  • Kong, Guoguo
  • Tan, Mingwu
  • Wang, Yong
  • Lin, Jingdong
  • Zhou, Wei
  • Wan, Shaolong

Abstract

Structured PdZnAl/Cu fiber catalyst prepared by a PVA(Polyvinyl Alcohol)-assisted coating method, was integrated in the micro-reactor for methanol steam reforming (MSR), which could be used to efficiently produce hydrogen in situ for a coupled fuel cell. XRD, SEM-EDX and HRTEM etc. were employed to characterize both the fresh and spent powder and structured catalysts. A variety of reaction conditions were tested to achieve the optimized reaction condition, where the H2 productivity and the product distribution especially CO selectivity were carefully examined. Compared to the structured CuZnAlZr/Cu fiber catalyst, the PdZnAl/Cu counterpart exhibits superior stability in MSR process, and its spent catalyst could be readily regenerated just by oxidation in air at 420 °C for 4 h.

Suggested Citation

  • Tian, Jinshu & Ke, Yuzhi & Kong, Guoguo & Tan, Mingwu & Wang, Yong & Lin, Jingdong & Zhou, Wei & Wan, Shaolong, 2017. "A novel structured PdZnAl/Cu fiber catalyst for methanol steam reforming in microreactor," Renewable Energy, Elsevier, vol. 113(C), pages 30-42.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:30-42
    DOI: 10.1016/j.renene.2017.04.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.04.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    2. Pan, Minqiang & Wu, Qiuyu & Jiang, Lianbo & Zeng, Dehuai, 2015. "Effect of microchannel structure on the reaction performance of methanol steam reforming," Applied Energy, Elsevier, vol. 154(C), pages 416-427.
    3. Li, Yanxia & Luo, Chaoming & Liu, Zhongliang & Sang, Lixia, 2015. "Catalytic oxidation characteristics of CH4–air mixtures over metal foam monoliths," Applied Energy, Elsevier, vol. 156(C), pages 756-761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fajín, José L.C. & Cordeiro, M. Natália D.S., 2024. "Renewable hydrogen production from biomass derivatives or water on trimetallic based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Liu, Yangxu & Zhou, Wei & Lin, Yu & Chen, Lu & Chu, Xuyang & Zheng, Tianqing & Wan, Shaolong & Lin, Jingdong, 2019. "Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor," Applied Energy, Elsevier, vol. 246(C), pages 24-37.
    3. Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perng, Shiang-Wuu & Wu, Horng-Wen, 2022. "Influence of inlet-nozzle and outlet-diffuser mounted in the plate-shape reactor on PEMFC net power output and methanol steam reforming performance," Applied Energy, Elsevier, vol. 323(C).
    2. Perng, Shiang-Wuu & Wu, Horng-Wen, 2023. "Enhancement of proton exchange membrane fuel cell net electric power and methanol-reforming performance by vein channel carved into the reactor plate," Energy, Elsevier, vol. 281(C).
    3. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    4. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    5. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    6. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    7. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    8. Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
    9. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    10. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    11. Antony Plait & Pierre Saenger & David Bouquain, 2024. "Fuel Cell System Modeling Dedicated to Performance Estimation in the Automotive Context," Energies, MDPI, vol. 17(15), pages 1-15, August.
    12. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    13. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Su, Guoqing & Yang, Daijun & Xiao, Qiangfeng & Dai, Haiqin & Zhang, Cunman, 2021. "Effects of vortexes in feed header on air flow distribution of PEMFC stack: CFD simulation and optimization for better uniformity," Renewable Energy, Elsevier, vol. 173(C), pages 498-506.
    15. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    16. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    17. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    18. Carlos Armenta-Déu, 2024. "Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
    19. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    20. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:30-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.