IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3403-d571901.html
   My bibliography  Save this article

Energy Community Flexibility Solutions to Improve Users’ Wellbeing

Author

Listed:
  • Adriana Mar

    (Department of Electrical and Computer Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
    Center of Technology and Systems (CTS)—UNINOVA, 2829-516 Caparica, Portugal)

  • Pedro Pereira

    (Department of Electrical and Computer Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
    Center of Technology and Systems (CTS)—UNINOVA, 2829-516 Caparica, Portugal)

  • João Martins

    (Department of Electrical and Computer Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
    Center of Technology and Systems (CTS)—UNINOVA, 2829-516 Caparica, Portugal)

Abstract

Energy communities, mostly microgrid based, are a key stakeholder of modern electrical power grids. Operating a microgrid based energy community is a challenging topic due to the involved uncertainties, complexities and often conflicting objectives. The aim of this paper is to present a novel methodology demonstrating that energy community flexibility can contribute to each community member’s wellbeing when a grid fault occurs. A three-house energy community will be modelled considering as consumption sources non-controllable and controllable devices in each house. As power supply sources, PV systems installed in a community’s houses are considered, as well as the power obtained from main grid. Each house’s flexibility inside the community will be studied to improve the management of loads during a fault occurrence. Moreover, three different scenarios will be considered with different available power in the community. With these simulations, it was possible to understand that houses’ energy flexibility can be used under a fault situation, either to maintain the users’ wellbeing or to change the energy flow. Furthermore, energy flexibility can be used to create better energy price markets, to improve the resilience of the grid, or even to consider electrical vehicles’ connection to a community’s grid.

Suggested Citation

  • Adriana Mar & Pedro Pereira & João Martins, 2021. "Energy Community Flexibility Solutions to Improve Users’ Wellbeing," Energies, MDPI, vol. 14(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3403-:d:571901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.
    2. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    3. Jed Cohen, Klaus Moeltner, Johannes Reichl and Michael Schmidthaler, 2016. "An Empirical Analysis of Local Opposition to New Transmission Lines Across the EU-27," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    4. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    5. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Feng, Yifu, 2017. "Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 710-721.
    6. Guilherme Pontes Luz & Rodrigo Amaro e Silva, 2021. "Modeling Energy Communities with Collective Photovoltaic Self-Consumption: Synergies between a Small City and a Winery in Portugal," Energies, MDPI, vol. 14(2), pages 1-26, January.
    7. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    8. Azarova, Valeriya & Cohen, Jed & Friedl, Christina & Reichl, Johannes, 2019. "Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland," Energy Policy, Elsevier, vol. 132(C), pages 1176-1183.
    9. Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
    10. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    11. Seyedfarzad Sarfarazi & Marc Deissenroth-Uhrig & Valentin Bertsch, 2020. "Aggregation of Households in Community Energy Systems: An Analysis from Actors’ and Market Perspectives," Energies, MDPI, vol. 13(19), pages 1-37, October.
    12. Emilio Ghiani & Andrea Giordano & Andrea Nieddu & Luca Rosetti & Fabrizio Pilo, 2019. "Planning of a Smart Local Energy Community: The Case of Berchidda Municipality (Italy)," Energies, MDPI, vol. 12(24), pages 1-14, December.
    13. Alexandre Lucas & Luca Jansen & Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2019. "Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector," Energies, MDPI, vol. 12(14), pages 1-19, July.
    14. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Ceglia & Elisa Marrasso & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2022. "The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits," Energies, MDPI, vol. 15(9), pages 1-28, May.
    2. Iraide López & Julen Gómez-Cornejo & Itxaso Aranzabal & Luis Emilio García & Javier Mazón, 2023. "Photovoltaic Local Energy Communities—Design of New Energy Exchange Modalities—Case Study: Tolosa," Energies, MDPI, vol. 16(10), pages 1-23, May.
    3. Jorge Luis Angarita-Márquez & Geev Mokryani & Jorge Martínez-Crespo, 2021. "Two-Stage Stochastic Model to Invest in Distributed Generation Considering the Long-Term Uncertainties," Energies, MDPI, vol. 14(18), pages 1-12, September.
    4. Paul Cristian Andrei & Horia Andrei, 2022. "Power Systems’ Connectivity and Resiliency: Modeling, Simulation and Analysis," Energies, MDPI, vol. 15(8), pages 1-3, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    2. Harder, Nick & Qussous, Ramiz & Weidlich, Anke, 2020. "The cost of providing operational flexibility from distributed energy resources," Applied Energy, Elsevier, vol. 279(C).
    3. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Xiaoyi Zhang & Weijun Gao & Yanxue Li & Zixuan Wang & Yoshiaki Ushifusa & Yingjun Ruan, 2021. "Operational Performance and Load Flexibility Analysis of Japanese Zero Energy House," IJERPH, MDPI, vol. 18(13), pages 1-19, June.
    5. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    6. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    7. Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
    8. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
    9. Alyssa Diva Mustika & Rémy Rigo-Mariani & Vincent Debusschere & Amaury Pachurka, 2022. "New Members Selection for the Expansion of Energy Communities," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    10. John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
    11. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Ziras, Charalampos & Heinrich, Carsten & Pertl, Michael & Bindner, Henrik W., 2019. "Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data," Applied Energy, Elsevier, vol. 242(C), pages 1407-1421.
    13. Saveria Olga Murielle Boulanger & Martina Massari & Danila Longo & Beatrice Turillazzi & Carlo Alberto Nucci, 2021. "Designing Collaborative Energy Communities: A European Overview," Energies, MDPI, vol. 14(24), pages 1-17, December.
    14. Cohen, Jed J. & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2021. "Preferences for community renewable energy investments in Europe," Energy Economics, Elsevier, vol. 100(C).
    15. Sebastian Goers & Fiona Rumohr & Sebastian Fendt & Louis Gosselin & Gilberto M. Jannuzzi & Rodolfo D. M. Gomes & Stella M. S. Sousa & Reshmi Wolvers, 2020. "The Role of Renewable Energy in Regional Energy Transitions: An Aggregate Qualitative Analysis for the Partner Regions Bavaria, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape," Sustainability, MDPI, vol. 13(1), pages 1-30, December.
    16. Monika Hall & Achim Geissler, 2020. "Load Control by Demand Side Management to Support Grid Stability in Building Clusters," Energies, MDPI, vol. 13(19), pages 1-15, October.
    17. Gallardo, Andres & Berardi, Umberto, 2022. "Evaluation of the energy flexibility potential of radiant ceiling panels with thermal energy storage," Energy, Elsevier, vol. 254(PC).
    18. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    19. Ziras, Charalampos & Heinrich, Carsten & Bindner, Henrik W., 2021. "Why baselines are not suited for local flexibility markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Monika Hall & Achim Geissler, 2021. "Comparison of Flexibility Factors and Introduction of A Flexibility Classification Using Advanced Heat Pump Control," Energies, MDPI, vol. 14(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3403-:d:571901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.