IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018330.html
   My bibliography  Save this article

Zero/negative carbon emission coal and biomass staged co-gasification power generation system via biomass heating

Author

Listed:
  • Yang, Dongtai
  • Li, Sheng
  • He, Song

Abstract

Currently, most coal utilization technologies cannot completely remove CO2, which hinders coal utilization in the context of carbon neutrality. Staged coal-steam gasification has proven to be a potential clean coal utilization method suitable for power generation. However, it cannot achieve zero or negative carbon emissions, and there is the potential to improve energy efficiency further. This study introduces biomass into staged coal gasification and proposes a novel power generation system based on coal- and biomass-staged co-gasification via biomass external combustion heating. Biomass with a lower energy level was combusted to provide heat for gasification, thus improving the energy level matching between the gasification and biomass combustion reactions. The synergistic effect of coal and biomass reduces the tar yield and improves the gasification efficiency. Furthermore, as a carbon-neutral fuel, the introduction of biomass in the staged coal-gasification process can achieve zero or negative carbon utilization of coal. The entire system was simulated using the ASPEN PLUS software, key processes were experimentally validated, and the energy efficiency and carbon emission performance were systematically studied. The results indicated that the improved gasification methods and the synergistic effect between coal and biomass significantly improved the energy performance and emission reduction characteristics. The power efficiency of the novel system was the highest at 40.03% when the biomass blending ratio of the co-gasification sub-process was 0.8, which was 5.27% and 10.46% higher than conventional integrated gasification combined cycle (IGCC) system and biomass direct-fired power plant. The carbon-specific emissions of the novel system could be reduced to −308.1 kgCO2/MWh, achieving negative carbon utilization of fossil fuels. This novel staged coal and biomass co-gasification method heating by biomass can achieve efficient and negative carbon utilization of fossil fuels.

Suggested Citation

  • Yang, Dongtai & Li, Sheng & He, Song, 2024. "Zero/negative carbon emission coal and biomass staged co-gasification power generation system via biomass heating," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018330
    DOI: 10.1016/j.apenergy.2023.122469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dandan & Li, Sheng & He, Song & Gao, Lin, 2019. "Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation," Applied Energy, Elsevier, vol. 240(C), pages 851-859.
    2. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    3. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Morató, Teresa & Vaezi, Mahdi & Kumar, Amit, 2020. "Techno-economic assessment of biomass combustion technologies to generate electricity in South America: A case study for Bolivia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
    7. Kang, Panxing & Zhang, Guangyi & Ge, Zefeng & Zha, Zhenting & Zhang, Huiyan, 2022. "Three-dimensional modelling and optimization of an industrial dual fluidized bed biomass gasification decoupling combustion reactor," Applied Energy, Elsevier, vol. 311(C).
    8. Fan, Junming & Hong, Hui & Jin, Hongguang, 2018. "Biomass and coal co-feed power and SNG polygeneration with chemical looping combustion to reduce carbon footprint for sustainable energy development: Process simulation and thermodynamic assessment," Renewable Energy, Elsevier, vol. 125(C), pages 260-269.
    9. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    10. Mansouri Majoumerd, Mohammad & Raas, Han & De, Sudipta & Assadi, Mohsen, 2014. "Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project," Applied Energy, Elsevier, vol. 113(C), pages 452-462.
    11. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    12. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
    13. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    14. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Tobias Pröll & Florian Zerobin, 2019. "Biomass-based negative emission technology options with combined heat and power generation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1307-1324, October.
    16. Wang, Chao & Zhu, Lianfeng & Zhang, Mengjuan & Han, Zhennan & Jia, Xin & Bai, Dingrong & Duo, Wenli & Bi, Xiaotao & Abudula, Abuliti & Guan, Guoqing & Xu, Guangwen, 2022. "A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production," Applied Energy, Elsevier, vol. 323(C).
    17. Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
    18. C. Oberschelp & S. Pfister & C. E. Raptis & S. Hellweg, 2019. "Global emission hotspots of coal power generation," Nature Sustainability, Nature, vol. 2(2), pages 113-121, February.
    19. Alexey Mikhaylov & Nikita Moiseev & Kirill Aleshin & Thomas Burkhardt, 2020. "Global climate change and greenhouse effect," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 2897-2913, June.
    20. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    21. Shi, Jingxin & Huang, Wenping & Han, Hongjun & Xu, Chunyan, 2021. "Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    22. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden, 2023. "Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy," Energies, MDPI, vol. 16(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    2. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    3. Adnan, Muflih A. & Hidayat, Arif & Hossain, Mohammad M. & Muraza, Oki, 2021. "Transformation of low-rank coal to clean syngas and power via thermochemical route," Energy, Elsevier, vol. 236(C).
    4. Liu, Liansheng & Wang, Dongji & Gao, Liwei & Duan, Runze, 2020. "Distributed heating/centralized monitoring mode of biomass briquette fuel in Chinese northern rural areas," Renewable Energy, Elsevier, vol. 147(P1), pages 1221-1230.
    5. Usama Ahmed & Muhammad Arsalan Hussain & Muhammad Bilal & Hassan Zeb & Umer Zahid & Sagheer A. Onaizi & Abdul Gani Abdul Jameel, 2021. "Utilization of Low-Rank Coals for Producing Syngas to Meet the Future Energy Needs: Technical and Economic Analysis," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    6. Díaz-Trujillo, Luis Alberto & González-Avilés, Mauricio & Fuentes-Cortés, Luis Fabián, 2024. "Soft-clustering for conflict management around the water-energy-carbon nexus and energy security," Applied Energy, Elsevier, vol. 360(C).
    7. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    8. Simonsen, Kenneth René & Hansen, Dennis Severin & Pedersen, Simon, 2024. "Challenges in CO2 transportation: Trends and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Wenming Wang & Yang Zhao & Yichi Ma & Chunying Guo & Jianli Jia, 2023. "An Assessment Framework for Human Health Risk from Heavy Metals in Coal Chemical Industry Soils in Northwest China," Sustainability, MDPI, vol. 15(20), pages 1-13, October.
    10. Sevigne, Eva & Gasol, Carles M. & Brun, Filippo & Rovira, Laura & Pagés, Josep Maria & Camps, Francesc & Rieradevall, Joan & Gabarrell, Xavier, 2011. "Water and energy consumption of Populus spp. bioenergy systems: A case study in Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1133-1140, February.
    11. Sam Van Holsbeeck & Mark Brown & Sanjeev Kumar Srivastava & Mohammad Reza Ghaffariyan, 2020. "A Review on the Potential of Forest Biomass for Bioenergy in Australia," Energies, MDPI, vol. 13(5), pages 1-19, March.
    12. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    14. Fan, Yongsheng & Lu, Dongsheng & Wang, Jiawei & Kawamoto, Haruo, 2022. "Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design," Energy, Elsevier, vol. 239(PC).
    15. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    16. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    17. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    18. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    19. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    20. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.