IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp837-849.html
   My bibliography  Save this article

Slag mobility in entrained flow gasifiers optimized using a new reliable viscosity model of iron oxide-containing multicomponent melts

Author

Listed:
  • Wu, Guixuan
  • Seebold, Sören
  • Yazhenskikh, Elena
  • Tanner, Joanne
  • Hack, Klaus
  • Müller, Michael

Abstract

Entrained flow gasification is a promising approach in clean and efficient utilization of coal as well as biomass. Knowledge of slag mobility is of fundamental as well as practical importance to maintain high performance in entrained flow coal or biomass gasification applications. Due to the complex behavior of slag mobility, especially in iron oxide-containing fuel slags, slag tap blockage remains a challenge. Slag mobility is directly related to the structure-dependent property viscosity. In this paper, a reliable, general viscosity model is therefore developed by taking into account the structure determined by temperature and composition and, for the first time, by oxygen partial pressure. The structure is described by means of a non-ideal associate solution used to describe the Gibbs energy of the liquid phase. This is a novel approach to bridge chemical and physical properties. In order to obtain a reasonable set of the model parameters, the viscosity behavior with respect to temperature, composition, and oxygen partial pressure is critically assessed in conjunction with the melt structure. The model calculations are further extended to evaluate systems with more than three components and the similarity in the predicted viscosity behavior in comparison to the experimental results in turn implies the validation of model parameters. The viscosities of several real coal and biomass slags are used to validate the model. The results show that the model gives a good performance in describing the viscosity over the whole range of compositions and a wide range of temperatures, as well as predicting the influence of oxygen partial pressures. This is achieved using only one set of model parameters, which have a clear physico-chemical meaning. The model is a self-consistent, reliable, predictive tool for use in the regions where no experimental data are available. In combination with the phase relation this reliable model is applied to determine an optimum liquid slag system according to a target viscosity value under given conditions through a proper blending proportion of several fuel slags, which prevents a potential complex slag mobility of liquid-solid mixtures. The limitations of the current model applied to describe the slag mobility in real entrained flow gasifiers are also specified.

Suggested Citation

  • Wu, Guixuan & Seebold, Sören & Yazhenskikh, Elena & Tanner, Joanne & Hack, Klaus & Müller, Michael, 2019. "Slag mobility in entrained flow gasifiers optimized using a new reliable viscosity model of iron oxide-containing multicomponent melts," Applied Energy, Elsevier, vol. 236(C), pages 837-849.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:837-849
    DOI: 10.1016/j.apenergy.2018.11.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2015. "A Critical Review of Mineral Matter Related Issues during Gasification of Coal in Fixed, Fluidized, and Entrained Flow Gasifiers," Energies, MDPI, vol. 8(9), pages 1-34, September.
    2. Ping Wang & Mehrdad Massoudi, 2013. "Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions," Energies, MDPI, vol. 6(2), pages 1-23, February.
    3. Franco, Alessandro & Diaz, Ana R., 2009. "The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control," Energy, Elsevier, vol. 34(3), pages 348-354.
    4. Chen, Xiaodong & Kong, Lingxue & Bai, Jin & Dai, Xin & Li, Huaizhu & Bai, Zongqing & Li, Wen, 2017. "The key for sodium-rich coal utilization in entrained flow gasifier: The role of sodium on slag viscosity-temperature behavior at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 1241-1249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Sefidari & Bo Lindblom & Lars-Olof Nordin & Henrik Wiinikka, 2020. "The Feasibility of Replacing Coal with Biomass in Iron-Ore Pelletizing Plants with Respect to Melt-Induced Slagging," Energies, MDPI, vol. 13(20), pages 1-25, October.
    2. Kim, Jinsu & Kim, Jungil & Oh, Hyunmin & Lee, Seokyoung & Lee, In-Beum & Yoon, Young-Seek, 2022. "Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2015. "A Critical Review of Mineral Matter Related Issues during Gasification of Coal in Fixed, Fluidized, and Entrained Flow Gasifiers," Energies, MDPI, vol. 8(9), pages 1-34, September.
    2. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2019. "Effect of Temperature, Pressure, Feed Particle Size, and Feed Particle Density on Structural Characteristics and Reactivity of Chars Generated during Gasification of Pittsburgh No.8 Coal in a High-Pre," Energies, MDPI, vol. 12(24), pages 1-27, December.
    3. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    4. Mingke Shen & Kunzan Qiu & Long Zhang & Zhenyu Huang & Zhihua Wang & Jianzhong Liu, 2015. "Influence of Coal Blending on Ash Fusibility in Reducing Atmosphere," Energies, MDPI, vol. 8(6), pages 1-20, May.
    5. M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.
    6. Niu, Shengli & Han, Kuihua & Zhao, Jianli & Lu, Chunmei, 2011. "Experimental study on nitric oxide reduction through calcium propionate reburning," Energy, Elsevier, vol. 36(2), pages 1003-1009.
    7. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    8. Kiso, F. & Matsuo, M., 2011. "A simulation study on the enhancement of the shift reaction by water injection into a gasifier," Energy, Elsevier, vol. 36(7), pages 4032-4040.
    9. Zhang, Jianyun & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2013. "Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal–water slurry preheating vaporization technology," Energy, Elsevier, vol. 51(C), pages 137-145.
    10. Jinsu Kim & Hyunmin Oh & Seokyoung Lee & Young-Seek Yoon, 2018. "Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash," Energies, MDPI, vol. 11(4), pages 1-14, April.
    11. Chen, Zhibin & Wang, Li & Huang, Zhiwei & Zhuang, Ping & Shi, Yiguang & Evrendilek, Fatih & Huang, Shengzheng & He, Yao & Liu, Jingyong, 2024. "Dynamic and optimal ash-to-gas responses of oxy-fuel and air combustions of soil remediation biomass," Renewable Energy, Elsevier, vol. 225(C).
    12. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    13. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    14. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    15. Taufiq, Bin Nur & Kikuchi, Yasunori & Ishimoto, Takayoshi & Honda, Kuniaki & Koyama, Michihisa, 2015. "Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation," Applied Energy, Elsevier, vol. 147(C), pages 486-499.
    16. Luis M. Abadie & José M. Chamorro, 2009. "The Economics of Gasification: A Market-Based Approach," Energies, MDPI, vol. 2(3), pages 1-33, August.
    17. Hofmann, Mathias & Tsatsaronis, George, 2018. "Comparative exergoeconomic assessment of coal-fired power plants – Binary Rankine cycle versus conventional steam cycle," Energy, Elsevier, vol. 142(C), pages 168-179.
    18. Hossam A. Gabbar & Mohamed Aboughaly & Stefano Russo, 2017. "Conceptual Design and Energy Analysis of Integrated Combined Cycle Gasification System," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    19. Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zeng, Lingyan & Zhu, Qunyi, 2013. "Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NOx emissions of a down-fired utility boiler," Energy, Elsevier, vol. 59(C), pages 377-386.
    20. Schaffel-Mancini, Natalia & Mancini, Marco & Szlek, Andrzej & Weber, Roman, 2010. "Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion (HTAC) technology," Energy, Elsevier, vol. 35(7), pages 2752-2760.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:837-849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.