IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p4735-4754d50140.html
   My bibliography  Save this article

Influence of Coal Blending on Ash Fusibility in Reducing Atmosphere

Author

Listed:
  • Mingke Shen

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Kunzan Qiu

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Long Zhang

    (Laboratory for Thermal Hydraulic and Safety, China Nuclear Power Technology Research Institute, Shenzhen 528026, China)

  • Zhenyu Huang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Zhihua Wang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Jianzhong Liu

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

Abstract

Coal blending is an effective way to organize and control coal ash fusibility to meet different requirements of Coal-fired power plants. This study investigates three different eutectic processes and explains the mechanism of how coal blending affects ash fusibility. The blended ashes were prepared by hand-mixing two raw coal ashes at five blending ratios, G:D = 10:90 (G10D90), G:D= 20:80 (G20D80), G:D = 30:70 (G30D70), G:D = 40:60 (G40D60), and G:D = 50:50 (G50D50). The samples were heated at 900 °C, 1000 °C, 1100 °C, 1200 °C, and 1300 °C in reducing atmosphere. XRD and SEM/EDX were used to identify mineral transformations and eutectic processes. The eutectic processes were finally simulated with FactSage. Results show that the fusion temperatures of the blended ashes initially decrease and then increase with the blending ratio, a trend that is typical of eutectic melting. Eutectic phenomena are observed in D100, G10D90, and G30D70 in different degrees, which do not appear in G100 and G50D50 for the lack of eutectic reactants. The main eutectic reactants are gehlenite, magnetite, merwinite, and diopside. The FactSage simulation results show that the content discrepancy of merwinite and diopside in the ashes causes the inconsistent eutectic temperatures and eutectic degrees, in turn decrease the fusion temperature of the blended ash and then increase them with the blending ratio.

Suggested Citation

  • Mingke Shen & Kunzan Qiu & Long Zhang & Zhenyu Huang & Zhihua Wang & Jianzhong Liu, 2015. "Influence of Coal Blending on Ash Fusibility in Reducing Atmosphere," Energies, MDPI, vol. 8(6), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:4735-4754:d:50140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/4735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/4735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Wang & Mehrdad Massoudi, 2013. "Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions," Energies, MDPI, vol. 6(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongwei Hu & Kun Zhou & Kesheng Meng & Lanbo Song & Qizhao Lin, 2017. "Effects of SiO2/Al2O3 Ratios on Sintering Characteristics of Synthetic Coal Ash," Energies, MDPI, vol. 10(2), pages 1-14, February.
    2. Sida Tian & Yuqun Zhuo & Zhonghua Zhan & Xinqian Shu & Zhizhong Kang, 2016. "Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace," Energies, MDPI, vol. 9(6), pages 1-14, June.
    3. Nawaz, Zanib & Ali, Usman, 2020. "Techno-economic evaluation of different operating scenarios for indigenous and imported coal blends and biomass co-firing on supercritical coal fired power plant performance," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    2. M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).
    4. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    5. Wu, Guixuan & Seebold, Sören & Yazhenskikh, Elena & Tanner, Joanne & Hack, Klaus & Müller, Michael, 2019. "Slag mobility in entrained flow gasifiers optimized using a new reliable viscosity model of iron oxide-containing multicomponent melts," Applied Energy, Elsevier, vol. 236(C), pages 837-849.
    6. Chen, Zhibin & Wang, Li & Huang, Zhiwei & Zhuang, Ping & Shi, Yiguang & Evrendilek, Fatih & Huang, Shengzheng & He, Yao & Liu, Jingyong, 2024. "Dynamic and optimal ash-to-gas responses of oxy-fuel and air combustions of soil remediation biomass," Renewable Energy, Elsevier, vol. 225(C).
    7. Taufiq, Bin Nur & Kikuchi, Yasunori & Ishimoto, Takayoshi & Honda, Kuniaki & Koyama, Michihisa, 2015. "Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation," Applied Energy, Elsevier, vol. 147(C), pages 486-499.
    8. Hossam A. Gabbar & Mohamed Aboughaly & Stefano Russo, 2017. "Conceptual Design and Energy Analysis of Integrated Combined Cycle Gasification System," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    9. Genevieve Soon & Hui Zhang & Adrian Wing-Keung Law & Chun Yang, 2023. "Computational Modelling on Gasification Processes of Municipal Solid Wastes Including Molten Slag," Waste, MDPI, vol. 1(2), pages 1-19, April.
    10. Li, Qiang & Wang, Qian & Zhang, Jiansheng & Wang, Weiliang & Liu, Jizhen, 2021. "Transition temperature and thermal conduction behavior of slag in gasification process," Energy, Elsevier, vol. 222(C).
    11. Wu Qin & Changfeng Lin & Jianye Wang & Xianbin Xiao & Changqing Dong & Li Wei, 2016. "Study on Reaction Characteristics of Chemical-Looping Combustion between Maize Stalk and High Index Facet Iron Oxide," Energies, MDPI, vol. 9(8), pages 1-11, August.
    12. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2015. "A Critical Review of Mineral Matter Related Issues during Gasification of Coal in Fixed, Fluidized, and Entrained Flow Gasifiers," Energies, MDPI, vol. 8(9), pages 1-34, September.
    13. Insoo Ye & Junho Oh & Changkook Ryu, 2015. "Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification," Energies, MDPI, vol. 8(5), pages 1-16, April.
    14. Young Mun Lee & Heeyoon Chung & Seon Ho Kim & Hyeng Sub Bae & Hyung Hee Cho, 2017. "Optimization of the Heating Element in a Gas-Gas Heater Using an Integrated Analysis Model," Energies, MDPI, vol. 10(12), pages 1-19, November.
    15. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:4735-4754:d:50140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.