IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v182y2016icp376-382.html
   My bibliography  Save this article

Applying a magnetic field on liquid line of vapour compression system is a novel technique to increase a performance of the system

Author

Listed:
  • Tipole, Pralhad
  • Karthikeyan, A.
  • Bhojwani, Virendra
  • Patil, Abhay
  • Oak, Ninad
  • Ponatil, Amal
  • Nagori, Palash

Abstract

This paper presents experimental investigations carried out to study the effect of magnetic field on energy savings in vapour compression system. Application of magnetic field to fluid flow breaks the molecule resulting in a decrease in the viscosity of the fluid. This drop in the viscosity reduces the pumping power required by the compressor as well as enhances the heat transfer rates in the condenser and evaporator due to increased mass flow rates. The net impact is improvement in the COP of the system. Considering the number of refrigerator and air conditioning systems sold globally every year any improvement in the COP could considerably save the energy bills as well as the energy requirement. The main benefit of this investigation is improvement in the system performance improvement in Evaporator capacity or drops in compressor power or increased COP at no cost i.e. no additional input energy. Only cost involved is the initial cost of magnets to be procured for applying suitable magnetic field. The present work was focused on first establishing the effect of magnetic field on the performance of the vapour compression system and then investigating the impact of magnetic-field strength on COP. The magnetic field strength was varied by increasing the number of magnet pairs applied to the liquid line (from condenser outlet to entry of expansion valve). The COP was initially measured without application of magnetic field, and then magnetic field applied to liquid refrigerant was increased by increasing the number of the magnetic pair from 1 to 5. The strength of each magnetic pair was 3000gauss. The result obtained showed improvement in COP of the system under investigation. The COP of the system increased up to13.13% for R134a and 21.87% for R600a refrigerant.

Suggested Citation

  • Tipole, Pralhad & Karthikeyan, A. & Bhojwani, Virendra & Patil, Abhay & Oak, Ninad & Ponatil, Amal & Nagori, Palash, 2016. "Applying a magnetic field on liquid line of vapour compression system is a novel technique to increase a performance of the system," Applied Energy, Elsevier, vol. 182(C), pages 376-382.
  • Handle: RePEc:eee:appene:v:182:y:2016:i:c:p:376-382
    DOI: 10.1016/j.apenergy.2016.08.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bera, Achinta & Babadagli, Tayfun, 2015. "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review," Applied Energy, Elsevier, vol. 151(C), pages 206-226.
    2. Monfet, Danielle & Zmeureanu, Radu, 2012. "Ongoing commissioning of water-cooled electric chillers using benchmarking models," Applied Energy, Elsevier, vol. 92(C), pages 99-108.
    3. Arikoglu, Aytac & Ozkol, Ibrahim & Komurgoz, Guven, 2008. "Effect of slip on entropy generation in a single rotating disk in MHD flow," Applied Energy, Elsevier, vol. 85(12), pages 1225-1236, December.
    4. Jia, Lisi & Chen, Ying & Lei, Shijun & Mo, Songping & Luo, Xianglong & Shao, Xuefeng, 2016. "External electromagnetic field-aided freezing of CMC-modified graphene/water nanofluid," Applied Energy, Elsevier, vol. 162(C), pages 1670-1677.
    5. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    6. Lee, Tzong-Shing & Lu, Wan-Chen, 2010. "An evaluation of empirically-based models for predicting energy performance of vapor-compression water chillers," Applied Energy, Elsevier, vol. 87(11), pages 3486-3493, November.
    7. Silva, D.J. & Ventura, J. & Araújo, J.P. & Pereira, A.M., 2014. "Maximizing the temperature span of a solid state active magnetic regenerative refrigerator," Applied Energy, Elsevier, vol. 113(C), pages 1149-1154.
    8. Aïboud-Saouli, S. & Settou, N. & Saouli, S. & Meza, N., 2007. "Second-law analysis of laminar fluid flow in a heated channel with hydromagnetic and viscous dissipation effects," Applied Energy, Elsevier, vol. 84(3), pages 279-289, March.
    9. Lee, Tzong-Shing & Liao, Ke-Yang & Lu, Wan-Chen, 2012. "Evaluation of the suitability of empirically-based models for predicting energy performance of centrifugal water chillers with variable chilled water flow," Applied Energy, Elsevier, vol. 93(C), pages 583-595.
    10. Gong, Guangcai & Chen, Feihu & Su, Huan & Zhou, Jianyong, 2012. "Thermodynamic simulation of condensation heat recovery characteristics of a single stage centrifugal chiller in a hotel," Applied Energy, Elsevier, vol. 91(1), pages 326-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Qiang & Sun, Zheng & Li, Zimu & Luan, Mingkai & Tang, Xiao & Li, Peng & Jiang, Zhenhua & Wei, Li, 2019. "Reduction of real gas losses with a DC flow in the regenerator of the refrigeration cycle," Applied Energy, Elsevier, vol. 235(C), pages 139-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    2. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    3. Blanca Foliaco & Antonio Bula & Peter Coombes, 2020. "Improving the Gordon-Ng Model and Analyzing Thermodynamic Parameters to Evaluate Performance in a Water-Cooled Centrifugal Chiller," Energies, MDPI, vol. 13(9), pages 1-20, April.
    4. Lee, S.H. & Lee, W.L., 2013. "Site verification and modeling of desiccant-based system as an alternative to conventional air-conditioning systems for wet markets," Energy, Elsevier, vol. 55(C), pages 1076-1083.
    5. Powell, Kody M. & Cole, Wesley J. & Ekarika, Udememfon F. & Edgar, Thomas F., 2013. "Optimal chiller loading in a district cooling system with thermal energy storage," Energy, Elsevier, vol. 50(C), pages 445-453.
    6. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    7. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    8. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    9. Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
    10. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    12. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    13. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    14. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    15. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    16. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    17. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    18. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    19. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    20. Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:182:y:2016:i:c:p:376-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.