Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.08.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martinez, Alvaro & Astrain, David & Aranguren, Patricia, 2016. "Thermoelectric self-cooling for power electronics: Increasing the cooling power," Energy, Elsevier, vol. 112(C), pages 1-7.
- Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Moosavi, Amin, 2016. "An exhaustive experimental study of a novel air-water based thermoelectric cooling unit," Applied Energy, Elsevier, vol. 181(C), pages 357-366.
- Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
- Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & González, J.R. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2018. "A method to assess the fuel economy of automotive thermoelectric generators," Applied Energy, Elsevier, vol. 222(C), pages 42-58.
- Shen, Limei & Pu, Xiwang & Sun, Yongjun & Chen, Jiongde, 2016. "A study on thermoelectric technology application in net zero energy buildings," Energy, Elsevier, vol. 113(C), pages 9-24.
- Miranda, Á.G. & Chen, T.S. & Hong, C.W., 2013. "Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles," Energy, Elsevier, vol. 59(C), pages 633-641.
- Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
- Lv, Hao & Wang, Xiao-Dong & Meng, Jing-Hui & Wang, Tian-Hu & Yan, Wei-Mon, 2016. "Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect," Applied Energy, Elsevier, vol. 175(C), pages 285-292.
- Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
- Lin, Shumin & Ma, Ming & Wang, Jun & Yu, Jianlin, 2016. "Experiment investigation of a two-stage thermoelectric cooler under current pulse operation," Applied Energy, Elsevier, vol. 180(C), pages 628-636.
- Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
- Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
- Sun, Dongfang & Shen, Limei & Sun, Miao & Yao, Yu & Chen, Huanxin & Jin, Shiping, 2018. "An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers," Applied Energy, Elsevier, vol. 219(C), pages 93-104.
- Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
- Wang, Xiao-Dong & Huang, Yu-Xian & Cheng, Chin-Hsiang & Ta-Wei Lin, David & Kang, Chung-Hao, 2012. "A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field," Energy, Elsevier, vol. 47(1), pages 488-497.
- He, Wei & Wang, Shixue & Lu, Chi & Zhang, Xing & Li, Yanzhe, 2016. "Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system," Applied Energy, Elsevier, vol. 162(C), pages 1251-1258.
- Dai, Baomin & Liu, Shengchun & Zhu, Kai & Sun, Zhili & Ma, Yitai, 2017. "Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander," Energy, Elsevier, vol. 122(C), pages 787-800.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cao, Qiang & Sun, Zheng & Li, Zimu & Luan, Mingkai & Tang, Xiao & Li, Peng & Jiang, Zhenhua & Wei, Li, 2019. "Reduction of real gas losses with a DC flow in the regenerator of the refrigeration cycle," Applied Energy, Elsevier, vol. 235(C), pages 139-146.
- Tian, Xiao-Xiao & Asaadi, Soheil & Moria, Hazim & Kaood, Amr & Pourhedayat, Samira & Jermsittiparsert, Kittisak, 2020. "Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler," Energy, Elsevier, vol. 208(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
- Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
- Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
- Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Pourhedayat, Samira, 2019. "A comprehensive exergy analysis of a prototype Peltier air-cooler; experimental investigation," Renewable Energy, Elsevier, vol. 131(C), pages 308-317.
- Zhao, Dongliang & Tan, Gang, 2014. "Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling," Energy, Elsevier, vol. 68(C), pages 658-666.
- Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
- Lin, Shumin & Ma, Ming & Wang, Jun & Yu, Jianlin, 2016. "Experiment investigation of a two-stage thermoelectric cooler under current pulse operation," Applied Energy, Elsevier, vol. 180(C), pages 628-636.
- Lv, Hao & Wang, Xiao-Dong & Meng, Jing-Hui & Wang, Tian-Hu & Yan, Wei-Mon, 2016. "Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect," Applied Energy, Elsevier, vol. 175(C), pages 285-292.
- Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Moosavi, Amin, 2016. "An exhaustive experimental study of a novel air-water based thermoelectric cooling unit," Applied Energy, Elsevier, vol. 181(C), pages 357-366.
- Wang, Xiao-Dong & Wang, Qiu-Hong & Xu, Jin-Liang, 2014. "Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model," Energy, Elsevier, vol. 65(C), pages 419-429.
- Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
- Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
- Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
- Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.
- Lv, Hao & Wang, Xiao-Dong & Wang, Tian-Hu & Meng, Jing-Hui, 2015. "Optimal pulse current shape for transient supercooling of thermoelectric cooler," Energy, Elsevier, vol. 83(C), pages 788-796.
- Jia Yu & Qingshan Zhu & Li Kong & Haoqing Wang & Hongji Zhu, 2020. "Modeling of an Integrated Thermoelectric Generation–Cooling System for Thermoelectric Cooler Waste Heat Recovery," Energies, MDPI, vol. 13(18), pages 1-10, September.
- Meng, Jing-Hui & Wu, Hao-Chi & Gao, De-Yang & Kai, Zhang & Lu, Gui & Yan, Wei-Mon, 2021. "A novel super-cooling enhancement method for a two-stage thermoelectric cooler using integrated triangular-square current pulses," Energy, Elsevier, vol. 217(C).
- Meng, Jing-Hui & Zhang, Xin-Xin & Wang, Xiao-Dong, 2014. "Multi-objective and multi-parameter optimization of a thermoelectric generator module," Energy, Elsevier, vol. 71(C), pages 367-376.
- Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
- Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
More about this item
Keywords
Thermoelectric; Cooling; Coefficient of performance; Water cooler; Peltier;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:364-374. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.