Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.09.115
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
- Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
- Reddy, Harvind Kumar & Muppaneni, Tapaswy & Ponnusamy, Sundaravadivelnathan & Sudasinghe, Nilusha & Pegallapati, Ambica & Selvaratnam, Thinesh & Seger, Mark & Dungan, Barry & Nirmalakhandan, Nagamany , 2016. "Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp," Applied Energy, Elsevier, vol. 165(C), pages 943-951.
- Akhtar, Javaid & Amin, Nor Aishah Saidina, 2011. "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1615-1624, April.
- Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
- Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
- Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
- Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marathe, P.S. & Westerhof, R.J.M. & Kersten, S.R.A., 2019. "Fast pyrolysis of lignins with different molecular weight: Experiments and modelling," Applied Energy, Elsevier, vol. 236(C), pages 1125-1137.
- Li, Bingshuo & Yang, Tianhua & Li, Rundong & Kai, Xingping, 2020. "Co-generation of liquid biofuels from lignocellulose by integrated biochemical and hydrothermal liquefaction process," Energy, Elsevier, vol. 200(C).
- SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Ouyang, Denghao & Wang, Fangqian & Hong, Jinpeng & Gao, Daihong & Zhao, Xuebing, 2021. "Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2," Applied Energy, Elsevier, vol. 304(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
- Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
- Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
- Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
- Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
- Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
- Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
- Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
- Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
- Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
- Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
- Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
- Xu, Donghai & Wang, Yang & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Wu, Zhiqiang, 2019. "Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production," Renewable Energy, Elsevier, vol. 138(C), pages 1143-1151.
- Wu, Xiao-Fei & Yin, Shuang-Shuang & Zhou, Qian & Li, Ming-Fei & Peng, Feng & Xiao, Xiao, 2019. "Subcritical liquefaction of lignocellulose for the production of bio-oils in ethanol/water system," Renewable Energy, Elsevier, vol. 136(C), pages 865-872.
- Xu, Donghai & Guo, Shuwei & Liu, Liang & Lin, Guike & Wu, Zhiqiang & Guo, Yang & Wang, Shuzhong, 2019. "Heterogeneous catalytic effects on the characteristics of water-soluble and water-insoluble biocrudes in chlorella hydrothermal liquefaction," Applied Energy, Elsevier, vol. 243(C), pages 165-174.
- Masoumi, Shima & Boahene, Philip E. & Dalai, Ajay K., 2021. "Biocrude oil and hydrochar production and characterization obtained from hydrothermal liquefaction of microalgae in methanol-water system," Energy, Elsevier, vol. 217(C).
- Huang, Hua-jun & Chang, Yan-chao & Lai, Fa-ying & Zhou, Chun-fei & Pan, Zi-qian & Xiao, Xiao-feng & Wang, Jia-xin & Zhou, Chun-huo, 2019. "Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products," Energy, Elsevier, vol. 173(C), pages 140-150.
More about this item
Keywords
Biomass; Continuous hydrothermal liquefaction; Biocrude; Oleaginous yeast; Lignin; Continuous hydrotreating; Economic analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:233-234:y:2019:i::p:840-853. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.