IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921012381.html
   My bibliography  Save this article

Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2

Author

Listed:
  • Ouyang, Denghao
  • Wang, Fangqian
  • Hong, Jinpeng
  • Gao, Daihong
  • Zhao, Xuebing

Abstract

Lignin is the most abundant aromatic compound in natural world and usually produced as a by-product in pulping industry and biomass biorefinery. To achieve direct and efficient conversion of lignin to electricity, we have constructed an electron transport chain mediated by several redox couples including [Fe(CN)6]3−/[Fe(CN)6]4−, VO2+/VO2+ and NO3−/NO, to promote the kinetics and efficiency of electron transfer from lignin to oxygen. [Fe(CN)6]3− could well extract electrons from corn stover alkaline lignin with 93–98% efficiency (based on the COD of lignin) at the weight ratio of lignin to K3Fe(CN)6 of 0.0121–0.0061:1. The formed ferrocyanide could be well re-oxidized in a liquid flow fuel cell with (VO2)2SO4 as the cathode electron carrier under the catalysis of HNO3. Under the optimal operation condition, a maximal peak power density of 200.3 mW/cm2 was achieved, being the highest among the reported results of various direct biomass fuel cells. The rate of electron transfer to air (oxygen) in cathode could be well improved by using an novel internal recycle reactor. About 90% of overall efficiency of electron transfer was achieved by this electron transport chain to convert the chemical energy of corn stover alkaline lignin to electric energy. The obtained results indicate that by using an acidic-alkaline asymmetric design under the assistance of proper electron carriers, the performance of the direct lignin fuel cell can be well improved. The finding of this work thus can provide a new route for highly-efficient generation of electricity from lignin.

Suggested Citation

  • Ouyang, Denghao & Wang, Fangqian & Hong, Jinpeng & Gao, Daihong & Zhao, Xuebing, 2021. "Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921012381
    DOI: 10.1016/j.apenergy.2021.117927
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xuebing & Wen, Jialong & Chen, Hongmei & Liu, Dehua, 2018. "The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production," Renewable Energy, Elsevier, vol. 128(PA), pages 200-209.
    2. Li, Haowei & Ma, Hongwei & Zhao, Weijie & Li, Xuehui & Long, Jinxing, 2019. "Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: Effect of the catalyst calcination temperature," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    4. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
    5. Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
    6. Larsson, Ragnar & Folkesson, Börje & Spaziante, Placido M. & Veerasai, Waret & Exell, Robert H.B., 2006. "A high-power carbohydrate fuel cell," Renewable Energy, Elsevier, vol. 31(4), pages 549-552.
    7. Zhao, Xuebing & Liu, Dehua, 2019. "Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining," Applied Energy, Elsevier, vol. 250(C), pages 229-244.
    8. Chang, Xiaogang & Bai, Yuchen & Wu, Ruchun & Liu, Dehua & Zhao, Xuebing, 2020. "Heterogeneity of lignocellulose must be considered for kinetic study: A case on formic acid fractionation of sugarcane bagasse with different pseudo-homogeneous kinetic models," Renewable Energy, Elsevier, vol. 162(C), pages 2246-2258.
    9. Wei Liu & Wei Mu & Mengjie Liu & Xiaodan Zhang & Hongli Cai & Yulin Deng, 2014. "Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    10. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mingqiang & Li, Hong & Wang, Yishuang & Tang, Zhiyuan & Dai, Wei & Li, Chang & Yang, Zhonglian & Wang, Jun, 2023. "Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol," Applied Energy, Elsevier, vol. 332(C).
    2. Snunkhaem Echaroj & Hwai Chyuan Ong & Xiuhan Chen, 2020. "Simulation of Mixing Intensity Profile for Bioethanol Production via Two-Step Fermentation in an Unbaffled Agitator Reactor," Energies, MDPI, vol. 13(20), pages 1-11, October.
    3. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    4. Marathe, P.S. & Westerhof, R.J.M. & Kersten, S.R.A., 2019. "Fast pyrolysis of lignins with different molecular weight: Experiments and modelling," Applied Energy, Elsevier, vol. 236(C), pages 1125-1137.
    5. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Yao, Qiuxiang & He, Lei & Ma, Duo & Wang, Linyang & Ma, Li & Chen, Huiyong & Hao, Qingqing & Sun, Ming, 2024. "Cracking of heavy-inferior oils with different alkane-aromatic ratios to aromatics over MFI zeolites:Structure-activity relationship derived by machine learning," Energy, Elsevier, vol. 289(C).
    7. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    9. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    11. Abraham Castro Garcia & Shuo Cheng & Jeffrey S. Cross, 2021. "Removing the Bottleneck on Wind Power Potential to Create Liquid Fuels from Locally Available Biomass," Energies, MDPI, vol. 14(12), pages 1-12, June.
    12. Gomes, Daniel G. & Teixeira, José A. & Domingues, Lucília, 2021. "Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds," Applied Energy, Elsevier, vol. 303(C).
    13. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
    14. Tong Liu, 2022. "Glucose Fuel Cells and Membranes: A Brief Overview and Literature Analysis," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    15. SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Vasilakou, Konstantina & Nimmegeers, Philippe & Thomassen, Gwenny & Billen, Pieter & Van Passel, Steven, 2023. "Assessing the future of second-generation bioethanol by 2030 – A techno-economic assessment integrating technology learning curves," Applied Energy, Elsevier, vol. 344(C).
    17. Aui, A. & Wang, Y. & Mba-Wright, M., 2021. "Evaluating the economic feasibility of cellulosic ethanol: A meta-analysis of techno-economic analysis studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Xu, Ling-Hua & Ma, Cheng-Ye & Zhang, Chen & Xu, Ying & Wen, Jia-Long & Yuan, Tong-Qi, 2022. "An integrated acetic acid-catalyzed hydrothermal-pretreatment (AAP) and rapid ball-milling for producing high-yield of xylo-oligosaccharides, fermentable glucose and lignin from poplar wood," Renewable Energy, Elsevier, vol. 201(P1), pages 691-699.
    19. Yang, Chun & Cao, Wei-Qin & Ji, Xiao-Feng & Wang, Jian & Zhong, Tao-Lin & Wang, Yu & Zhang, Qing, 2020. "In situ fuel phosphorylation facilitates the complete oxidation of glycerol in direct biomass cells," Renewable Energy, Elsevier, vol. 146(C), pages 699-704.
    20. Biswas, Bijoy & Kumar, Avnish & Krishna, Bhavya B. & Bhaskar, Thallada, 2021. "Effects of solid base catalysts on depolymerization of alkali lignin for the production of phenolic monomer compounds," Renewable Energy, Elsevier, vol. 175(C), pages 270-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921012381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.