IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2216-d1388606.html
   My bibliography  Save this article

Permeability: The Driving Force That Influences the Mechanical Behavior of Polymers Used for Hydrogen Storage and Delivery

Author

Listed:
  • Emanuele Sgambitterra

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

  • Leonardo Pagnotta

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

Abstract

This article explores the main mechanisms that can generate damage in polymers and polymer-based materials used for hydrogen storage and distribution infrastructures. All of these mechanisms are driven by the permeability process that is enhanced by the operating temperature and pressure conditions. Hydrogen storage and delivery systems typically work under high pressure and a relatively wide range of temperatures, especially during the filling and emptying processes. Therefore, it is of great interest to better understand how this phenomenon can influence the integrity of polymer-based hydrogen infrastructures in order to avoid catastrophic events and to better design/investigate new optimized solutions. The first part of this paper discusses the main storage and delivery solutions for gas and liquid hydrogen. Then, the physics of the permeability is investigated with a focus on the effect of pressure and temperature on the integrity of polymers working in a hydrogen environment. Finally, the main mechanisms that mostly induce damage in polymers operating in a hydrogen environment and that influence their mechanical properties are explored and discussed. Particular focus was placed on the rapid gas decompression and aging phenomena. In addition, some of the limits that still exist for a reliable design of polymer-based storage and delivery systems for hydrogen are pointed out.

Suggested Citation

  • Emanuele Sgambitterra & Leonardo Pagnotta, 2024. "Permeability: The Driving Force That Influences the Mechanical Behavior of Polymers Used for Hydrogen Storage and Delivery," Energies, MDPI, vol. 17(9), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2216-:d:1388606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.
    2. Tsiklios, C. & Hermesmann, M. & Müller, T.E., 2022. "Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations," Applied Energy, Elsevier, vol. 327(C).
    3. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    3. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    5. Qi, Xiaoyan & Yao, Xilong & Guo, Pibin & Han, Yunfei & Liu, Lin, 2024. "Applying life cycle assessment to investigate the environmental impacts of a PV–CSP hybrid system," Renewable Energy, Elsevier, vol. 227(C).
    6. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Fukunaga, Akihiko & Kato, Asami & Hara, Yuki & Matsumoto, Takaya, 2023. "Dehydrogenation of methylcyclohexane using solid oxide fuel cell – A smart energy conversion," Applied Energy, Elsevier, vol. 348(C).
    8. Krebs-Moberg, Miles & Pitz, Mandy & Dorsette, Tiara L. & Gheewala, Shabbir H., 2021. "Third generation of photovoltaic panels: A life cycle assessment," Renewable Energy, Elsevier, vol. 164(C), pages 556-565.
    9. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    10. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).
    11. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    12. Wang, Lunche & Qiu, Tianzhi & Zhang, Ming & Cao, Qian & Qin, Wenmin & Wang, Shaoqiang & Wang, Lizhe & Chen, Deliang & Wild, Martin, 2024. "Carbon emissions and reduction performance of photovoltaic systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    13. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    14. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    15. Muhammad Haris Hamayun & Ibrahim M. Maafa & Murid Hussain & Rabya Aslam, 2020. "Simulation Study to Investigate the Effects of Operational Conditions on Methylcyclohexane Dehydrogenation for Hydrogen Production," Energies, MDPI, vol. 13(1), pages 1-15, January.
    16. Wang, Zanxin & Wei, Wei, 2017. "External cost of photovoltaic oriented silicon production: A case in China," Energy Policy, Elsevier, vol. 107(C), pages 437-447.
    17. Idiano D’Adamo, 2018. "The Profitability of Residential Photovoltaic Systems. A New Scheme of Subsidies Based on the Price of CO 2 in a Developed PV Market," Social Sciences, MDPI, vol. 7(9), pages 1-21, August.
    18. Gustavo Ezequiel Martinez & Roel Degens & Gabriela Espadas-Aldana & Daniele Costa & Giuseppe Cardellini, 2024. "Prospective Life Cycle Assessment of Hydrogen: A Systematic Review of Methodological Choices," Energies, MDPI, vol. 17(17), pages 1-15, August.
    19. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    20. Mladen Bošnjaković & Mato Galović & Jasmin Kuprešak & Tomislav Bošnjaković, 2023. "The End of Life of PV Systems: Is Europe Ready for It?," Sustainability, MDPI, vol. 15(23), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2216-:d:1388606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.