Gasification process integration with existing combined heat and power plants for polygeneration of dimethyl ether or methanol: A detailed profitability analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.05.069
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
- Kabalina, Natalia & Costa, Mário & Yang, Weihong & Martin, Andrew, 2017. "Energy and economic assessment of a polygeneration district heating and cooling system based on gasification of refuse derived fuels," Energy, Elsevier, vol. 137(C), pages 696-705.
- Haro, Pedro & Trippe, Frederik & Stahl, Ralph & Henrich, Edmund, 2013. "Bio-syngas to gasoline and olefins via DME – A comprehensive techno-economic assessment," Applied Energy, Elsevier, vol. 108(C), pages 54-65.
- Gustavsson, Christer & Hulteberg, Christian, 2016. "Co-production of gasification based biofuels in existing combined heat and power plants – Analysis of production capacity and integration potential," Energy, Elsevier, vol. 111(C), pages 830-840.
- Clausen, Lasse R. & Elmegaard, Brian & Ahrenfeldt, Jesper & Henriksen, Ulrik, 2011. "Thermodynamic analysis of small-scale dimethyl ether (DME) and methanol plants based on the efficient two-stage gasifier," Energy, Elsevier, vol. 36(10), pages 5805-5814.
- Galanti, Leandro & Franzoni, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2011. "Existing large steam power plant upgraded for hydrogen production," Applied Energy, Elsevier, vol. 88(5), pages 1510-1518, May.
- Peduzzi, Emanuela & Tock, Laurence & Boissonnet, Guillaume & Maréchal, François, 2013. "Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol," Energy, Elsevier, vol. 58(C), pages 9-16.
- Ravaghi-Ardebili, Zohreh & Manenti, Flavio, 2015. "Unified modeling and feasibility study of novel green pathway of biomass to methanol/dimethylether," Applied Energy, Elsevier, vol. 145(C), pages 278-294.
- Clausen, Lasse R. & Elmegaard, Brian & Houbak, Niels, 2010. "Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass," Energy, Elsevier, vol. 35(12), pages 4831-4842.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Uchman, Wojciech & Kotowicz, Janusz & Sekret, Robert, 2022. "Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind," Applied Energy, Elsevier, vol. 328(C).
- Hao Chen & Erik Dahlquist & Konstantinos Kyprianidis, 2024. "Retrofitting Biomass Combined Heat and Power Plant for Biofuel Production—A Detailed Techno-Economic Analysis," Energies, MDPI, vol. 17(2), pages 1-23, January.
- Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Marzieh Bagheri & Marcus Öhman & Elisabeth Wetterlund, 2022. "Techno-Economic Analysis of Scenarios on Energy and Phosphorus Recovery from Mono- and Co-Combustion of Municipal Sewage Sludge," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
- Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
- Pradhan, Priyabrata & Gadkari, Prabodh & Mahajani, Sanjay M. & Arora, Amit, 2019. "A conceptual framework and techno-economic analysis of a pelletization-gasification based bioenergy system," Applied Energy, Elsevier, vol. 249(C), pages 1-13.
- Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
- Kler, Aleksandr M. & Tyurina, Elina A. & Mednikov, Aleksandr S., 2018. "A plant for methanol and electricity production: Technical-economic analysis," Energy, Elsevier, vol. 165(PB), pages 890-899.
- Dominik Kryzia & Michał Kopacz & Katarzyna Kryzia, 2020. "The Valuation of the Operational Flexibility of the Energy Investment Project Based on a Gas-Fired Power Plant," Energies, MDPI, vol. 13(7), pages 1-16, March.
- Zhang, Xiaosong & Pan, Jiawei & Wang, Liang & Qian, Tianle & Zhu, Yuezhao & Sun, Hongqi & Gao, Jian & Chen, Haijun & Gao, Ying & Liu, Chang, 2019. "COSMO-based solvent selection and Aspen Plus process simulation for tar absorptive removal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).
- Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
- Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Uddin, Md Mosleh & Simson, Amanda & Wright, Mark Mba, 2020. "Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel," Energy, Elsevier, vol. 211(C).
- Mevawala, Chirag & Jiang, Yuan & Bhattacharyya, Debangsu, 2019. "Techno-economic optimization of shale gas to dimethyl ether production processes via direct and indirect synthesis routes," Applied Energy, Elsevier, vol. 238(C), pages 119-134.
- Fornell, Rickard & Berntsson, Thore & Åsblad, Anders, 2013. "Techno-economic analysis of a kraft pulp-mill-based biorefinery producing both ethanol and dimethyl ether," Energy, Elsevier, vol. 50(C), pages 83-92.
- Wu, Handong & Gao, Lin & Jin, Hongguang & Li, Sheng, 2017. "Low-energy-penalty principles of CO2 capture in polygeneration systems," Applied Energy, Elsevier, vol. 203(C), pages 571-581.
- Wang, Shucheng & Chen, Xiaoxu & Wei, Bing & Fu, Zhongguang & Li, Hongwei & Qin, Mei, 2023. "Thermodynamic analysis of a net zero emission system with CCHP and green DME production by integrating biomass gasification," Energy, Elsevier, vol. 273(C).
- Clausen, Lasse R., 2014. "Integrated torrefaction vs. external torrefaction – A thermodynamic analysis for the case of a thermochemical biorefinery," Energy, Elsevier, vol. 77(C), pages 597-607.
- Narvaez, A. & Chadwick, D. & Kershenbaum, L., 2019. "Performance of small-medium scale polygeneration systems for dimethyl ether and power production," Energy, Elsevier, vol. 188(C).
- Elsido, Cristina & Martelli, Emanuele & Kreutz, Thomas, 2019. "Heat integration and heat recovery steam cycle optimization for a low-carbon lignite/biomass-to-jet fuel demonstration project," Applied Energy, Elsevier, vol. 239(C), pages 1322-1342.
- Clausen, Lasse R., 2015. "Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification," Energy, Elsevier, vol. 85(C), pages 94-104.
- Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
- Holmgren, Kristina M. & Berntsson, Thore & Lönnqvist, Tomas, 2018. "Profitability and greenhouse gas emissions of gasification-based biofuel production - Analysis of sector specific policy instruments and comparison to conventional biomass conversion technologies," Energy, Elsevier, vol. 165(PA), pages 997-1007.
- Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
- Rivarolo, M. & Magistri, L. & Massardo, A.F., 2014. "Hydrogen and methane generation from large hydraulic plant: Thermo-economic multi-level time-dependent optimization," Applied Energy, Elsevier, vol. 113(C), pages 1737-1745.
- Salkuyeh, Yaser Khojasteh & Elkamel, Ali & Thé, Jesse & Fowler, Michael, 2016. "Development and techno-economic analysis of an integrated petroleum coke, biomass, and natural gas polygeneration process," Energy, Elsevier, vol. 113(C), pages 861-874.
- Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Clausen, Lasse R., 2017. "Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification," Energy, Elsevier, vol. 125(C), pages 327-336.
- Jan Stąsiek & Marek Szkodo, 2020. "Thermochemical Conversion of Biomass and Municipal Waste into Useful Energy Using Advanced HiTAG/HiTSG Technology," Energies, MDPI, vol. 13(16), pages 1-17, August.
- Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
- Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
- Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
More about this item
Keywords
Biomass-to-liquid; Waste-to-energy; Monte Carlo simulations; Aspen plus; Gasification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:116-128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.