IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p522-d1323864.html
   My bibliography  Save this article

Retrofitting Biomass Combined Heat and Power Plant for Biofuel Production—A Detailed Techno-Economic Analysis

Author

Listed:
  • Hao Chen

    (School of Business, Society and Engineering, Mälardalen University, P.O. Box 883, 721 23 Västerås, Sweden)

  • Erik Dahlquist

    (School of Business, Society and Engineering, Mälardalen University, P.O. Box 883, 721 23 Västerås, Sweden)

  • Konstantinos Kyprianidis

    (School of Business, Society and Engineering, Mälardalen University, P.O. Box 883, 721 23 Västerås, Sweden)

Abstract

Existing combined heat and power plants usually operate on part-load conditions during low heating demand seasons. Similarly, there are boilers designated for winter use that remain inactive for much of the year. This brings a concern about the inefficiency of resource utilization. Retrofitting existing CHP plants (especially for those with spare boilers) for biofuel production could increase revenue and enhance resource efficiency. This study introduces a novel approach that combines biomass gasification and pyrolysis in a polygeneration process that is based on utilizing existing CHP facilities to produce biomethane, bio-oil, and hydrogen. In this work, a detailed analysis was undertaken of retrofitting an existing biomass combined heat and power plant for biofuel production. The biofuel production plant is designed to explore the polygeneration of hydrogen, biomethane, and bio-oil via the integration of gasification, pyrolysis, and renewable-powered electrolysis. An Aspen Plus model of the proposed biofuel production plant is established followed by a performance investigation of the biofuel production plant under various design conditions. An economic analysis is carried out to examine the profitability of the proposed polygeneration system. Results show that the proposed polygeneration system can achieve 40% carbon efficiency with a payback period of 9 years and an internal rate of return of 17.5%, without the integration of renewable hydrogen. When integrated with renewable-power electrolysis, the carbon efficiency could be significantly improved to approximately 90%; however, the high investment cost associated with the electrolyzer system makes this integration economically unfavorable.

Suggested Citation

  • Hao Chen & Erik Dahlquist & Konstantinos Kyprianidis, 2024. "Retrofitting Biomass Combined Heat and Power Plant for Biofuel Production—A Detailed Techno-Economic Analysis," Energies, MDPI, vol. 17(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:522-:d:1323864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kotowicz, Janusz & Węcel, Daniel & Jurczyk, Michał, 2018. "Analysis of component operation in power-to-gas-to-power installations," Applied Energy, Elsevier, vol. 216(C), pages 45-59.
    2. Kohl, Thomas & Teles, Moises & Melin, Kristian & Laukkanen, Timo & Järvinen, Mika & Park, Song Won & Guidici, Reinaldo, 2015. "Exergoeconomic assessment of CHP-integrated biomass upgrading," Applied Energy, Elsevier, vol. 156(C), pages 290-305.
    3. Pettersson, Malin & Olofsson, Johanna & Börjesson, Pål & Björnsson, Lovisa, 2022. "Reductions in greenhouse gas emissions through innovative co-production of bio-oil in combined heat and power plants," Applied Energy, Elsevier, vol. 324(C).
    4. Zetterholm, Jonas & Wetterlund, Elisabeth & Pettersson, Karin & Lundgren, Joakim, 2018. "Evaluation of value chain configurations for fast pyrolysis of lignocellulosic biomass - Integration, feedstock, and product choice," Energy, Elsevier, vol. 144(C), pages 564-575.
    5. Salman, Chaudhary Awais & Naqvi, Muhammad & Thorin, Eva & Yan, Jinyue, 2018. "Gasification process integration with existing combined heat and power plants for polygeneration of dimethyl ether or methanol: A detailed profitability analysis," Applied Energy, Elsevier, vol. 226(C), pages 116-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uchman, Wojciech & Kotowicz, Janusz & Sekret, Robert, 2022. "Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind," Applied Energy, Elsevier, vol. 328(C).
    2. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    3. Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.
    4. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    5. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    6. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    7. Daraei, Mahsa & Campana, Pietro Elia & Thorin, Eva, 2020. "Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants," Applied Energy, Elsevier, vol. 276(C).
    8. Fischer, David & Kaufmann, Florian & Hollinger, Raphael & Voglstätter, Christopher, 2018. "Real live demonstration of MPC for a power-to-gas plant," Applied Energy, Elsevier, vol. 228(C), pages 833-842.
    9. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Gunarathne, Duleeka Sandamali & Mellin, Pelle & Yang, Weihong & Pettersson, Magnus & Ljunggren, Rolf, 2016. "Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace," Applied Energy, Elsevier, vol. 170(C), pages 353-361.
    11. Pettersson, Malin & Olofsson, Johanna & Börjesson, Pål & Björnsson, Lovisa, 2022. "Reductions in greenhouse gas emissions through innovative co-production of bio-oil in combined heat and power plants," Applied Energy, Elsevier, vol. 324(C).
    12. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    13. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    14. Yang, Y. & Brammer, J.G. & Wright, D.G. & Scott, J.A. & Serrano, C. & Bridgwater, A.V., 2017. "Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact," Applied Energy, Elsevier, vol. 191(C), pages 639-652.
    15. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    16. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Wang, Zhiwei & Lei, Tingzhou & Yang, Miao & Li, Zaifeng & Qi, Tian & Xin, Xiaofei & He, Xiaofeng & Ajayebi, Atta & Yan, Xiaoyu, 2017. "Life cycle environmental impacts of cornstalk briquette fuel in China," Applied Energy, Elsevier, vol. 192(C), pages 83-94.
    18. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    19. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
    20. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:522-:d:1323864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.