IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp35-43.html
   My bibliography  Save this article

Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering

Author

Listed:
  • Li, Siyang
  • Pei, Jun
  • Liu, Dawei
  • Bao, Liangliang
  • Li, Jing-Feng
  • Wu, Huaqiang
  • Li, Liangliang

Abstract

A thermoelectric (TE) power generator with eight pairs of segmented TE legs was fabricated and characterized. The segmented TE legs were synthesized by one-step spark plasma sintering (SPS), including n-type Bi2Te3/PbSe0.5Te0.5 and p-type Bi0.3Sb1.7Te3/Zn4Sb3 legs. They were assembled on AlN substrates with patterned Cu electrodes by soldering to form a thermoelectric generator (TEG). Power generation of the TEG was measured using a desktop TEG testing instrument. A maximum output power of 48.6 mW was obtained at a temperature difference of 296 K. The Seebeck voltage of the segmented TE legs was 17.4% less than the theoretical value, which was satisfactory. The electrical resistance of the segmented legs was dramatically increased in comparison with that of the bulk materials, which was due to the large interfacial resistance between different segments in the TE legs; therefore, the interfacial resistance was found to be one of the key factors limiting the power generation of the segmented TEG. The output power of the segmented TEG without interfacial resistance was predicted to be 165.9 mW, and the corresponding efficiency was 1.53%. The experimental and simulation data demonstrate that it is feasible to fabricate a high-performance TEG with segmented legs synthesized by one-step SPS.

Suggested Citation

  • Li, Siyang & Pei, Jun & Liu, Dawei & Bao, Liangliang & Li, Jing-Feng & Wu, Huaqiang & Li, Liangliang, 2016. "Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering," Energy, Elsevier, vol. 113(C), pages 35-43.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:35-43
    DOI: 10.1016/j.energy.2016.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216309586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    2. Lu, Hongliang & Wu, Ting & Bai, Shengqiang & Xu, Kangcong & Huang, Yingjie & Gao, Weimin & Yin, Xianglin & Chen, Lidong, 2013. "Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator," Energy, Elsevier, vol. 54(C), pages 372-377.
    3. Gou, Xiaolong & Yang, Suwen & Xiao, Heng & Ou, Qiang, 2013. "A dynamic model for thermoelectric generator applied in waste heat recovery," Energy, Elsevier, vol. 52(C), pages 201-209.
    4. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    5. Tan, Ming & Deng, Yuan & Hao, Yanming, 2014. "Improved thermoelectric performance of a film device induced by densely columnar Cu electrode," Energy, Elsevier, vol. 70(C), pages 143-148.
    6. Park, K. & Lee, G.W., 2013. "Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion," Energy, Elsevier, vol. 60(C), pages 87-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    2. Su, Ning & Zhu, Pengfei & Pan, Yuhui & Li, Fu & Li, Bo, 2020. "3D-printing of shape-controllable thermoelectric devices with enhanced output performance," Energy, Elsevier, vol. 195(C).
    3. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
    4. Karana, Dhruv Raj & Sahoo, Rashmi Rekha, 2019. "Influence of geometric parameter on the performance of a new asymmetrical and segmented thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 90-99.
    5. Jia, Xiao-Dong & Wang, Yuan-Jing & Gao, Yuan-Wen, 2017. "Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply," Energy, Elsevier, vol. 130(C), pages 276-285.
    6. Feng, Rong & Zhu, Jiajian & Wang, Zhenguo & Sun, Mingbo & Wang, Hongbo & Cai, Zun & An, Bin & Li, Liang, 2021. "Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma," Energy, Elsevier, vol. 214(C).
    7. Nour Eddine, A. & Chalet, D. & Faure, X. & Aixala, L. & Chessé, P., 2018. "Effect of engine exhaust gas pulsations on the performance of a thermoelectric generator for wasted heat recovery: An experimental and analytical investigation," Energy, Elsevier, vol. 162(C), pages 715-727.
    8. Nour Eddine, A. & Chalet, D. & Faure, X. & Aixala, L. & Chessé, P., 2018. "Optimization and characterization of a thermoelectric generator prototype for marine engine application," Energy, Elsevier, vol. 143(C), pages 682-695.
    9. Wang, Xue & Wang, Hongchao & Su, Wenbin & Zhai, Jinze & Wang, Teng & Chen, Tingting & Mehmood, Fahad & Wang, Chunlei, 2019. "Optimization of the performance of the SnTe uni-leg thermoelectric module via metallized layers," Renewable Energy, Elsevier, vol. 131(C), pages 606-616.
    10. Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
    11. Harb, Abd El-Moneim A. & Elsayed, Khairy & Sedrak, Momtaz & Ahmed, Mahmoud & Abdo, Ahmed, 2024. "Enhancing the performance of thermoelectric generators using novel segmental arrangement of multi-functional gradient materials," Renewable Energy, Elsevier, vol. 225(C).
    12. Kim, Sang Hoon & Min, Taesik & Choi, Jae Won & Baek, Seon Hwa & Choi, Joon-Phil & Aranas, Clodualdo, 2018. "Ternary Bi2Te3In2Te3Ga2Te3 (n-type) thermoelectric film on a flexible PET substrate for use in wearables," Energy, Elsevier, vol. 144(C), pages 607-618.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    2. He, Wei & Wang, Shixue & Zhang, Xing & Li, Yanzhe & Lu, Chi, 2015. "Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat," Energy, Elsevier, vol. 91(C), pages 1-9.
    3. Tan, Ming & Deng, Yuan & Hao, Yanming, 2014. "Improved thermoelectric performance of a film device induced by densely columnar Cu electrode," Energy, Elsevier, vol. 70(C), pages 143-148.
    4. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    5. Georgopoulou, Chariklia A. & Dimopoulos, George G. & Kakalis, Nikolaos M.P., 2016. "A modular dynamic mathematical model of thermoelectric elements for marine applications," Energy, Elsevier, vol. 94(C), pages 13-28.
    6. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    8. Massaguer, E. & Massaguer, A. & Pujol, T. & Comamala, M. & Montoro, L. & Gonzalez, J.R., 2019. "Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system," Energy, Elsevier, vol. 179(C), pages 306-314.
    9. Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).
    10. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    11. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    12. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    13. Yihua Zhang & Guyang Peng & Shuankui Li & Haijun Wu & Kaidong Chen & Jiandong Wang & Zhihao Zhao & Tu Lyu & Yuan Yu & Chaohua Zhang & Yang Zhang & Chuansheng Ma & Shengwu Guo & Xiangdong Ding & Jun Su, 2024. "Phase interface engineering enables state-of-the-art half-Heusler thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Bushra Jabar & Fu Li & Zhuanghao Zheng & Adil Mansoor & Yongbin Zhu & Chongbin Liang & Dongwei Ao & Yuexing Chen & Guangxing Liang & Ping Fan & Weishu Liu, 2021. "Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Martín Lallana & Adrián Almazán & Alicia Valero & Ángel Lareo, 2021. "Assessing Energy Descent Scenarios for the Ecological Transition in Spain 2020–2030," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    17. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Carmen de la Cruz-Lovera & Alberto-Jesus Perea-Moreno & José Luis de la Cruz-Fernández & Francisco G. Montoya & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Analysis of Research Topics and Scientific Collaborations in Energy Saving Using Bibliometric Techniques and Community Detection," Energies, MDPI, vol. 12(10), pages 1-23, May.
    20. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:35-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.