IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp42-51.html
   My bibliography  Save this article

Transient current similarity based protection for wind farm transmission lines

Author

Listed:
  • Jia, Ke
  • Li, Yanbin
  • Fang, Yu
  • Zheng, Liming
  • Bi, Tianshu
  • Yang, Qixun

Abstract

Large-scale wind farms are usually integrated into the transmission system. Applying traditional steady-state power-frequency based protection strategies in these transmission lines creates challenges such as: (1) the fault current of the wind farm might be dominated by non-power-frequency components caused by the activation of their own protection systems during fault ride through (FRT). The frequency of the dominant component is determined by the rotor speed at the fault inception and might vary from 0.7 to 1.3 times the power frequency. This will create errors in phasors calculated at the power-frequency. (2) The steady-state fault current angles of wind farms are fully controlled by their power converters. The variety of control actions of the different converters during FRT makes these phase angles greatly deviate from those of the synchronous generators. Protection systems that use double-ended phasors such as current differential schemes will suffer from low sensitivity or even malfunction when large-scale wind farms are integrated. Therefore, a novel full-time transient current waveform similarity based protection scheme is proposed to deal with these issues. The full-time current protection scheme uses both the power-frequency and non-power-frequency characteristics and can therefore reduce the influence of power-frequency phasor calculation errors to a minimum. The proposed method uses the transient current (within 10 ms after the fault inception) and is ignores the features of the steady-state fault current. In other words, the proposed protection is suitable for wind farms with a variety of controls. In the proposed method, the correlation coefficient index is used to calculate the similarity of the transient current signals at both ends of the line. Both experimental and field testing results show that using a common sampling frequency, the proposed protection scheme only uses current information and can correctly identify all types of external and internal line faults in a short period of time and can offer better performance for high fault resistance and noise, both for different types of wind farms. All these features and contributions make the new protection feasible for industry application.

Suggested Citation

  • Jia, Ke & Li, Yanbin & Fang, Yu & Zheng, Liming & Bi, Tianshu & Yang, Qixun, 2018. "Transient current similarity based protection for wind farm transmission lines," Applied Energy, Elsevier, vol. 225(C), pages 42-51.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:42-51
    DOI: 10.1016/j.apenergy.2018.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918307050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Neeraj, 2016. "A review on the inclusion of wind generation in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 530-543.
    2. Capuder, Tomislav & Pandžić, Hrvoje & Kuzle, Igor & Škrlec, Davor, 2013. "Specifics of integration of wind power plants into the Croatian transmission network," Applied Energy, Elsevier, vol. 101(C), pages 142-150.
    3. Feng, Yi & Lin, Heyun & Ho, S.L. & Yan, Jianhu & Dong, Jianning & Fang, Shuhua & Huang, Yunkai, 2015. "Overview of wind power generation in China: Status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 847-858.
    4. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    5. Yao, Jun & Liu, Ruikuo & Zhou, Te & Hu, Weihao & Chen, Zhe, 2017. "Coordinated control strategy for hybrid wind farms with DFIG-based and PMSG-based wind farms during network unbalance," Renewable Energy, Elsevier, vol. 105(C), pages 748-763.
    6. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    7. Wang, Mingshen & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2017. "Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1673-1683.
    8. Shahriari, Mehdi & Blumsack, Seth, 2017. "Scaling of wind energy variability over space and time," Applied Energy, Elsevier, vol. 195(C), pages 572-585.
    9. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
    10. Badihi, Hamed & Zhang, Youmin & Hong, Henry, 2017. "Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches," Applied Energy, Elsevier, vol. 201(C), pages 284-307.
    11. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
    12. Song, Zhanfeng & Xia, Changliang & Shi, Tingna, 2010. "Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect," Applied Energy, Elsevier, vol. 87(10), pages 3283-3293, October.
    13. Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
    14. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    15. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    16. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingyu Liang & Wulin Li & Guanjun Xu, 2020. "Performance Problem of Current Differential Protection of Lines Emanating from Photovoltaic Power Plants," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    2. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    3. Xu Li & Yuping Lu & Tao Huang, 2020. "Impact of the DFIG-Based Wind Farm Connection on the Fault Component-Based Directional Relay and a Mitigation Countermeasure," Energies, MDPI, vol. 13(17), pages 1-27, August.
    4. Yingyu Liang & Guanjun Xu & Wenting Zha & Cong Wang, 2019. "Adaptability Analysis of Fault Component Distance Protection on Transmission Lines Connected to Photovoltaic Power Stations," Energies, MDPI, vol. 12(8), pages 1-19, April.
    5. Changping Li & Xiaohui Wang & Longchen Duan & Bo Lei, 2022. "Study on a Discharge Circuit Prediction Model of High-Voltage Electro-Pulse Boring Based on Bayesian Fusion," Energies, MDPI, vol. 15(10), pages 1-12, May.
    6. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    7. Fu, Xiaopeng & Wang, Chengshan & Li, Peng & Wang, Liwei, 2019. "Exponential integration algorithm for large-scale wind farm simulation with Krylov subspace acceleration," Applied Energy, Elsevier, vol. 254(C).
    8. Joshua, Ann Mary & Vittal, K. Panduranga, 2023. "Superimposed current based differential protection scheme for AC microgrid feeders," Applied Energy, Elsevier, vol. 341(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.
    2. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    3. Liao, Siyang & Xu, Jian & Sun, Yuanzhang & Bao, Yi, 2018. "Local utilization of wind electricity in isolated power systems by employing coordinated control scheme of industrial energy-intensive load," Applied Energy, Elsevier, vol. 217(C), pages 14-24.
    4. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    5. Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.
    6. Ciupăgeanu, Dana-Alexandra & Lăzăroiu, Gheorghe & Barelli, Linda, 2019. "Wind energy integration: Variability analysis and power system impact assessment," Energy, Elsevier, vol. 185(C), pages 1183-1196.
    7. Xu Li & Yuping Lu & Tao Huang, 2020. "Impact of the DFIG-Based Wind Farm Connection on the Fault Component-Based Directional Relay and a Mitigation Countermeasure," Energies, MDPI, vol. 13(17), pages 1-27, August.
    8. Wang, Mingshen & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2017. "Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1673-1683.
    9. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    10. Dragomir, George & Șerban, Alexandru & Năstase, Gabriel & Brezeanu, Alin Ionuț, 2016. "Wind energy in Romania: A review from 2009 to 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 129-143.
    11. Zheng, Yidan & Liu, Huiwen & Chamorro, Leonardo P. & Zhao, Zhenzhou & Li, Ye & Zheng, Yuan & Tang, Kexin, 2023. "Impact of turbulence level on intermittent-like events in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 203(C), pages 45-55.
    12. Ochoa, Danny & Martinez, Sergio, 2018. "Frequency dependent strategy for mitigating wind power fluctuations of a doubly-fed induction generator wind turbine based on virtual inertia control and blade pitch angle regulation," Renewable Energy, Elsevier, vol. 128(PA), pages 108-124.
    13. Ahmed Gailani & Tracey Crosbie & Maher Al-Greer & Michael Short & Nashwan Dawood, 2020. "On the Role of Regulatory Policy on the Business Case for Energy Storage in Both EU and UK Energy Systems: Barriers and Enablers," Energies, MDPI, vol. 13(5), pages 1-20, March.
    14. Xia, S.W. & Bu, S.Q. & Zhang, X. & Xu, Y. & Zhou, B. & Zhu, J.B., 2018. "Model reduction strategy of doubly-fed induction generator-based wind farms for power system small-signal rotor angle stability analysis," Applied Energy, Elsevier, vol. 222(C), pages 608-620.
    15. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    16. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    17. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    18. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    19. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    20. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:42-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.