IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1436-d320887.html
   My bibliography  Save this article

Performance Problem of Current Differential Protection of Lines Emanating from Photovoltaic Power Plants

Author

Listed:
  • Yingyu Liang

    (School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Wulin Li

    (School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Guanjun Xu

    (NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211000, China)

Abstract

The amplitude and phase angle of the fault current in photovoltaic power plants (PVPPs) are significantly influenced by the control system of the grid-connected inverters, unlike in a conventional synchronous source. Hence, PVPPs may adversely affect the performance of the current differential protection designed for synchronous sources-based power grids. In order to study the performance problem of current differential protection on AC transmission lines, an analytical expression of the fault current in the PVPPs was deduced, and the fault current characteristic was extensively analyzed. Based on this analysis, the ratio of differential current over restraint current was initially derived in this study; this ratio is observed to be affected by the control system parameters, power grid system parameters, fault resistance, and fault types. Moreover, the dynamic characteristics of this ratio can be clearly observed based on a three-dimensional diagram. Furthermore, the operating performance of the current differential protection was analyzed under different influencing factors. The mathematical analysis presents that the amplitude ratio of the fault current on both sides of the line is larger than nine and that current differential protection will operate reliably in any case. Meanwhile, the theoretical analysis and simulation results show that the current phase angle difference may become an obtuse angle in case of an ungrounded fault, which will cause inaccurate operation of the current differential protection. The results of this study will provide guidance for the engineering application of current differential protection in case the PVPPs are connected to a power grid.

Suggested Citation

  • Yingyu Liang & Wulin Li & Guanjun Xu, 2020. "Performance Problem of Current Differential Protection of Lines Emanating from Photovoltaic Power Plants," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1436-:d:320887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Ke & Li, Yanbin & Fang, Yu & Zheng, Liming & Bi, Tianshu & Yang, Qixun, 2018. "Transient current similarity based protection for wind farm transmission lines," Applied Energy, Elsevier, vol. 225(C), pages 42-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingyu Liang & Guanjun Xu & Wenting Zha & Cong Wang, 2019. "Adaptability Analysis of Fault Component Distance Protection on Transmission Lines Connected to Photovoltaic Power Stations," Energies, MDPI, vol. 12(8), pages 1-19, April.
    2. Xu Li & Yuping Lu & Tao Huang, 2020. "Impact of the DFIG-Based Wind Farm Connection on the Fault Component-Based Directional Relay and a Mitigation Countermeasure," Energies, MDPI, vol. 13(17), pages 1-27, August.
    3. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    4. Changping Li & Xiaohui Wang & Longchen Duan & Bo Lei, 2022. "Study on a Discharge Circuit Prediction Model of High-Voltage Electro-Pulse Boring Based on Bayesian Fusion," Energies, MDPI, vol. 15(10), pages 1-12, May.
    5. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    6. Fu, Xiaopeng & Wang, Chengshan & Li, Peng & Wang, Liwei, 2019. "Exponential integration algorithm for large-scale wind farm simulation with Krylov subspace acceleration," Applied Energy, Elsevier, vol. 254(C).
    7. Joshua, Ann Mary & Vittal, K. Panduranga, 2023. "Superimposed current based differential protection scheme for AC microgrid feeders," Applied Energy, Elsevier, vol. 341(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1436-:d:320887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.